PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Investigating hookworm genomes by comparative analysis of two Ancylostoma species 
BMC Genomics  2005;6:58.
Background
Hookworms, infecting over one billion people, are the mostly closely related major human parasites to the model nematode Caenorhabditis elegans. Applying genomics techniques to these species, we analyzed 3,840 and 3,149 genes from Ancylostoma caninum and A. ceylanicum.
Results
Transcripts originated from libraries representing infective L3 larva, stimulated L3, arrested L3, and adults. Most genes are represented in single stages including abundant transcripts like hsp-20 in infective L3 and vit-3 in adults. Over 80% of the genes have homologs in C. elegans, and nearly 30% of these were with observable RNA interference phenotypes. Homologies were identified to nematode-specific and clade V specific gene families. To study the evolution of hookworm genes, 574 A. caninum / A. ceylanicum orthologs were identified, all of which were found to be under purifying selection with distribution ratios of nonsynonymous to synonymous amino acid substitutions similar to that reported for C. elegans / C. briggsae orthologs. The phylogenetic distance between A. caninum and A. ceylanicum is almost identical to that for C. elegans / C. briggsae.
Conclusion
The genes discovered should substantially accelerate research toward better understanding of the parasites' basic biology as well as new therapies including vaccines and novel anthelmintics.
doi:10.1186/1471-2164-6-58
PMCID: PMC1112591  PMID: 15854223
2.  Analysis and functional classification of transcripts from the nematode Meloidogyne incognita 
Genome Biology  2003;4(4):R26.
As an entrée to characterizing plant parasitic nematode genomes, 5,700 expressed sequence tags (ESTs) from the infective second-stage larvae (L2) of the root-knot nematode Meloidogyne incognita have been analyzed. In addition to identifying putative nematode-specific and Tylenchida-specific genes, sequencing revealed previously uncharacterized horizontal gene transfer candidates in Meloidogyne with high identity to rhizobacterial genes.
Background
Plant parasitic nematodes are major pathogens of most crops. Molecular characterization of these species as well as the development of new techniques for control can benefit from genomic approaches. As an entrée to characterizing plant parasitic nematode genomes, we analyzed 5,700 expressed sequence tags (ESTs) from second-stage larvae (L2) of the root-knot nematode Meloidogyne incognita.
Results
From these, 1,625 EST clusters were formed and classified by function using the Gene Ontology (GO) hierarchy and the Kyoto KEGG database. L2 larvae, which represent the infective stage of the life cycle before plant invasion, express a diverse array of ligand-binding proteins and abundant cytoskeletal proteins. L2 are structurally similar to Caenorhabditis elegans dauer larva and the presence of transcripts encoding glyoxylate pathway enzymes in the M. incognita clusters suggests that root-knot nematode larvae metabolize lipid stores while in search of a host. Homology to other species was observed in 79% of translated cluster sequences, with the C. elegans genome providing more information than any other source. In addition to identifying putative nematode-specific and Tylenchida-specific genes, sequencing revealed previously uncharacterized horizontal gene transfer candidates in Meloidogyne with high identity to rhizobacterial genes including homologs of nodL acetyltransferase and novel cellulases.
Conclusions
With sequencing from plant parasitic nematodes accelerating, the approaches to transcript characterization described here can be applied to more extensive datasets and also provide a foundation for more complex genome analyses.
doi:10.1186/gb-2003-4-4-r26
PMCID: PMC154577  PMID: 12702207

Results 1-2 (2)