PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-16 (16)
 

Clipboard (0)
None
Journals
more »
Year of Publication
Document Types
1.  Validating the Chinese version of the Verbal Learning Test for screening Alzheimer’s disease 
Episodic memory tasks are one of the most sensitive tools to discriminate Alzheimer’s disease (AD). This study aimed to validate a shorter version verbal memory test that will efficiently assess Chinese elderly with memory complaints. One hundred and eighty-five elderly with normal cognition (NC) and 217 AD patients were evaluated. Each participant received the Chinese Version Verbal Learning Test (CVVLT) consisting of 9 two-character nouns with 4 learning trials, 2 delayed recalls in 30 seconds and 10 minutes, and a word recognition test. In the NC elderly, age and sex had significant effects on recall scores in CVVLT, while education level showed an inverse correlation with 3 different patterns of errors made during the learning, recall, and recognition trials. AD patients had lower scores across all recall tests. In those with lower educational level, NC elderly had higher perseveration errors than AD patients. The cutoff value between the AD and NC groups in the 10-minute recall was 4/5 for those aged >75 years and 5/6 for those aged <75 years. This study has good validity in discriminating AD participants and the data here can help in diagnosing AD and mild cognitive impairment using the CVVLT.
doi:10.1017/S1355617709991184
PMCID: PMC3767760  PMID: 20003579
Chinese Verbal Learning Test; education; memory; dementia; cutoff value; validation
2.  Genomic and functional analysis identifies CRKL as an oncogene amplified in lung cancer 
Oncogene  2009;29(10):1421-1430.
DNA amplifications, leading to the overexpression of oncogenes, are a cardinal feature of lung cancer and directly contribute to its pathogenesis. To uncover novel such alterations, we performed an array-based comparative genomic hybridization survey of 128 non-small cell lung cancer cell lines and tumors. Prominent among our findings, we identified recurrent high-level amplification at cytoband 22q11.21 in 3% of lung cancer specimens, with another 11% of specimens exhibiting low-level gain spanning that locus. The 22q11.21 amplicon core contained eight named genes, only four of which were overexpressed (by transcript profiling) when amplified. Among these, CRKL encodes an adaptor protein functioning in signal transduction, best known as a substrate of the BCR-ABL kinase in chronic myelogenous leukemia. RNA interference-mediated knockdown of CRKL in lung cancer cell lines with (but not without) amplification led to significantly decreased cell proliferation, cell-cycle progression, cell survival, and cell motility and invasion. In addition, overexpression of CRKL in immortalized human bronchial epithelial cells led to EGF-independent cell growth. Our findings indicate that amplification and resultant overexpression of CRKL contributes to diverse oncogenic phenotypes in lung cancer, with implications for targeted therapy, and highlighting a role of adapter proteins as primary genetic drivers of tumorigenesis.
doi:10.1038/onc.2009.437
PMCID: PMC3320568  PMID: 19966867
CRKL; lung cancer; DNA amplification; genomic profiling; adapter protein
3.  Uterotrophic effects of cow milk in immature ovariectomized Sprague–Dawley rats 
Objectives
Milk contains considerable quantities of estrogens and progesterone and as such may be one of the risk factors for hormone-related cancers. To determine the hormonal effects of commercial and traditional types of milk, we performed uterotrophic tests.
Methods
Forty-five rats were ovariectomized and divided into three groups of 15 animals each. The animals were kept for 7 days on powdered chow and one of three different liquids: commercial milk (C), traditional milk (T), or water. At autopsy, wet and dry uterine weights were determined. The cell heights of the uterine epithelium and endometrium were determined. The uterine 5-bromo-2-deoxyuridine (BrdU) labeling index of the epithelium and endometrium gland epithelium was also assessed.
Results
The weights of wet and dry uterus were 142 ± 13 and 112 ± 10 mg in the C group, 114 ± 30 and 91 ± 24 mg in the T group, and 87 ± 6 and 69 ± 5 mg in the W group. Significant differences in wet and dry uterus weights were found between all pairs of groups. The ratio of the wet uterine weight to body weight was significantly higher in the C and T groups than in the W group. The heights of the uterine epithelium and endometrium were higher and BrdU labeling index was greater in the C group than in the T and W groups.
Conclusions
Commercially available milk and traditional milk have uterotrophic effects on young ovariectomized rats. Our findings indicate that these uterotrophic effects in the milk groups were partly due to the estrogen and progesterone in the milk.
doi:10.1007/s12199-009-0123-8
PMCID: PMC2854339  PMID: 19957059
Cow milk; Estrogen; Ovariectomized rat; Progesterone; Uterotrophic assay
4.  Potassium Inhibits Dietary Salt-Induced Transforming Growth Factor-β Production 
Hypertension  2009;54(5):1159-1163.
Human and animal studies demonstrate an untoward effect of excess dietary NaCl (salt) intake on cardiovascular function and life span. The endothelium in particular augments the production of transforming growth factor (TGF)-β, a fibrogenic growth factor, in response to excess dietary salt intake. This study explored the initiating mechanism that regulates salt-induced endothelial cell production of TGF-β. Male Sprague-Dawley rats were given diets containing different amounts of NaCl and potassium for 4 days. A bioassay for TGF-β demonstrated increased (35.2%) amounts of active TGF-β in the medium of aortic ring segments from rats on the high-salt diet compared with rats maintained on a 0.3% NaCl diet. Inhibition of the large-conductance, calcium-activated potassium channel inhibited dietary salt-induced vascular production of TGF-β but did not affect production of TGF-β by ring segments from rats on the low-salt diet. Immunohistochemical and Western analyses demonstrated the α subunit of the calcium-activated potassium channel in endothelial cells. Increasing medium [K+] inhibited production of dietary salt-induced vascular production levels of total and active TGF-β but did not alter TGF-β production by aortic rings from rats on the 0.3% NaCl diet. Increasing dietary potassium content decreased urinary active TGF-β in animals receiving the high-salt diet but did not change urinary active TGF-β in animals receiving the low-salt diet. The findings demonstrated an interesting interaction between the dietary intake of potassium and excess NaCl and further showed the fundamental role of the endothelial calcium-activated potassium channel in the vascular response to excess salt intake.
doi:10.1161/HYPERTENSIONAHA.109.138255
PMCID: PMC2766016  PMID: 19738156
dietary sodium chloride; potassium channel; endothelium; aorta; iberiotoxin; physiology
5.  The evolving role of mass spectrometry in cancer biomarker discovery 
Cancer biology & therapy  2009;8(12):1083-1094.
Although the field of mass spectrometry-based proteomics is still in its infancy, recent developments in targeted proteomic techniques have left the field poised to impact the clinical protein biomarker pipeline now more than at any other time in history. For proteomics to meet its potential for finding biomarkers, clinicians, statisticians, epidemiologists and chemists must work together in an interdisciplinary approach. These interdisciplinary efforts will have the greatest chance for success if participants from each discipline have a basic working knowledge of the other disciplines. To that end, the purpose of this review is to provide a nontechnical overview of the emerging/evolving roles that mass spectrometry (especially targeted modes of mass spectrometry) can play in the biomarker pipeline, in hope of making the technology more accessible to the broader community for biomarker discovery efforts. Additionally, the technologies discussed are broadly applicable to proteomic studies, and are not restricted to biomarker discovery.
PMCID: PMC2957893  PMID: 19502776
targeted proteomics; multiple reaction monitoring; selected reaction monitoring; biomarker; mass spectrometry
6.  A Radiation-Derived Gene Expression Signature Predicts Clinical Outcome for Breast Cancer Patients 
Radiation research  2009;171(2):141-154.
Activation of the DNA damage response pathway is a hallmark for early tumorigenesis, while loss of pathway activity is associated with disease progression. Thus we hypothesized that a gene expression signature associated with the DNA damage response may serve as a prognostic signature for outcome in cancer patients. We identified ionizing radiation-responsive transcripts in human lymphoblast cells derived from 12 individuals and used this signature to screen a panel of cancer data sets for the ability to predict long-term survival of cancer patients. We demonstrate that gene sets induced or repressed by ionizing radiation can predict clinical outcome in two independent breast cancer data sets, and we compare the radiation signature to previously described gene expression-based outcome predictors. While genes repressed in response to radiation likely represent the well-characterized proliferation signature predictive of breast cancer outcome, genes induced by radiation likely encode additional information representing other deregulated biological properties of tumors such as checkpoint or apoptotic responses.
doi:10.1667/RR1223.1
PMCID: PMC2662705  PMID: 19267539
7.  Postmenopausal estrogen and progestin effects on the serum proteome 
Genome Medicine  2009;1(12):121.
Background
Women's Health Initiative randomized trials of postmenopausal hormone therapy reported intervention effects on several clinical outcomes, with some important differences between estrogen alone and estrogen plus progestin. The biologic mechanisms underlying these effects, and these differences, have yet to be fully elucidated.
Methods
Baseline serum samples were compared with samples drawn 1 year later for 50 women assigned to active hormone therapy in both the estrogen-plus-progestin and estrogen-alone randomized trials, by applying an in-depth proteomic discovery platform to serum pools from 10 women per pool.
Results
In total, 378 proteins were quantified in two or more of the 10 pooled serum comparisons, by using strict identification criteria. Of these, 169 (44.7%) showed evidence (nominal P < 0.05) of change in concentration between baseline and 1 year for one or both of estrogen-plus-progestin and estrogen-alone groups. Quantitative changes were highly correlated between the two hormone-therapy preparations. A total of 98 proteins had false discovery rates < 0.05 for change with estrogen plus progestin, compared with 94 for estrogen alone. Of these, 84 had false discovery rates <0.05 for both preparations. The observed changes included multiple proteins relevant to coagulation, inflammation, immune response, metabolism, cell adhesion, growth factors, and osteogenesis. Evidence of differential changes also was noted between the hormone preparations, with the strongest evidence in growth factor and inflammation pathways.
Conclusions
Serum proteomic analyses yielded a large number of proteins similarly affected by estrogen plus progestin and by estrogen alone and identified some proteins and pathways that appear to be differentially affected between the two hormone preparations; this may explain their distinct clinical effects.
doi:10.1186/gm121
PMCID: PMC2808737  PMID: 20034393
8.  Epstein–Barr Virus DNase (BGLF5) induces genomic instability in human epithelial cells 
Nucleic Acids Research  2009;38(6):1932-1949.
Epstein–Barr Virus (EBV) DNase (BGLF5) is an alkaline nuclease and has been suggested to be important in the viral life cycle. However, its effect on host cells remains unknown. Serological and histopathological studies implied that EBV DNase seems to be correlated with carcinogenesis. Therefore, we investigate the effect of EBV DNase on epithelial cells. Here, we report that expression of EBV DNase induces increased formation of micronucleus, an indicator of genomic instability, in human epithelial cells. We also demonstrate, using γH2AX formation and comet assay, that EBV DNase induces DNA damage. Furthermore, using host cell reactivation assay, we find that EBV DNase expression repressed damaged DNA repair in various epithelial cells. Western blot and quantitative PCR analyses reveal that expression of repair-related genes is reduced significantly in cells expressing EBV DNase. Host shut-off mutants eliminate shut-off expression of repair genes and repress damaged DNA repair, suggesting that shut-off function of BGLF5 contributes to repression of DNA repair. In addition, EBV DNase caused chromosomal aberrations and increased the microsatellite instability (MSI) and frequency of genetic mutation in human epithelial cells. Together, we propose that EBV DNase induces genomic instability in epithelial cells, which may be through induction of DNA damage and also repression of DNA repair, subsequently increases MSI and genetic mutations, and may contribute consequently to the carcinogenesis of human epithelial cells.
doi:10.1093/nar/gkp1169
PMCID: PMC2847232  PMID: 20034954
9.  Efficient Assembly and Secretion of Recombinant Subviral Particles of the Four Dengue Serotypes Using Native prM and E Proteins 
PLoS ONE  2009;4(12):e8325.
Background
Flavivirus infected cells produce infectious virions and subviral particles, both of which are formed by the assembly of prM and E envelope proteins and are believed to undergo the same maturation process. Dengue recombinant subviral particles have been produced in cell cultures with either modified or chimeric proteins but not using the native forms of prM and E.
Methodology/Principal Findings
We have used a codon optimization strategy to obtain an efficient expression of native viral proteins and production of recombinant subviral particles (RSPs) for all four dengue virus (DV) serotypes. A stable HeLa cell line expressing DV1 prME was established (HeLa-prME) and RSPs were analyzed by immunofluorescence and transmission electron microscopy. We found that E protein is mainly present in the endoplasmic reticulum (ER) where assembly of RSPs could be observed. Biochemical characterization of DV1 RSPs secretion revealed both prM protein cleavage and homodimerization of E proteins before their release into the supernatant, indicating that RSPs undergo a similar maturation process as dengue virus. Pulse chase experiment showed that 8 hours are required for the secretion of DV1 RSPs. We have used HeLa-prME to develop a semi-quantitative assay and screened a human siRNA library targeting genes involved in membrane trafficking. Knockdown of 23 genes resulted in a significant reduction in DV RSP secretion, whereas for 22 others we observed an increase of RSP levels in cell supernatant.
Conclusions/Significance
Our data describe the efficient production of RSPs containing native prM and E envelope proteins for all dengue serotypes. Dengue RSPs and corresponding producing cell lines are safe and novel tools that can be used in the study of viral egress as well as in the development of vaccine and drugs against dengue virus.
doi:10.1371/journal.pone.0008325
PMCID: PMC2790604  PMID: 20016834
10.  High resolution discovery and confirmation of copy number variants in 90 Yoruba Nigerians 
Genome Biology  2009;10(11):R125.
Most microRNAs have a stronger inhibitory effect in estrogen receptor-negative than in estrogen receptor-positive breast cancers.
Background
Copy number variants (CNVs) account for a large proportion of genetic variation in the genome. The initial discoveries of long (> 100 kb) CNVs in normal healthy individuals were made on BAC arrays and low resolution oligonucleotide arrays. Subsequent studies that used higher resolution microarrays and SNP genotyping arrays detected the presence of large numbers of CNVs that are < 100 kb, with median lengths of approximately 10 kb. More recently, whole genome sequencing of individuals has revealed an abundance of shorter CNVs with lengths < 1 kb.
Results
We used custom high density oligonucleotide arrays in whole-genome scans at approximately 200-bp resolution, and followed up with a localized CNV typing array at resolutions as close as 10 bp, to confirm regions from the initial genome scans, and to detect the occurrence of sample-level events at shorter CNV regions identified in recent whole-genome sequencing studies. We surveyed 90 Yoruba Nigerians from the HapMap Project, and uncovered approximately 2,700 potentially novel CNVs not previously reported in the literature having a median length of approximately 3 kb. We generated sample-level event calls in the 90 Yoruba at nearly 9,000 regions, including approximately 2,500 regions having a median length of just approximately 200 bp that represent the union of CNVs independently discovered through whole-genome sequencing of two individuals of Western European descent. Event frequencies were noticeably higher at shorter regions < 1 kb compared to longer CNVs (> 1 kb).
Conclusions
As new shorter CNVs are discovered through whole-genome sequencing, high resolution microarrays offer a cost-effective means to detect the occurrence of events at these regions in large numbers of individuals in order to gain biological insights beyond the initial discovery.
doi:10.1186/gb-2009-10-11-r125
PMCID: PMC3091319  PMID: 19900272
11.  Lack of association between mutations of gene-encoding mitochondrial D310 (displacement loop) mononucleotide repeat and oxidative stress in chronic dialysis patients in Taiwan 
Background
Mitochondria (mt) are highly susceptible to reactive oxygen species (ROS). In this study, we investigated the association between a region within the displacement loop (D-loop) in mtDNA that is highly susceptible to ROS and oxidative stress markers in chronic dialysis patients. We enrolled 184 chronic dialysis patients and 213 age-matched healthy subjects for comparison. Blood levels of oxidative stress markers, such as thiobarbituric acid reactive substances (TBARS) and free thiol, and the mtDNA copy number were determined. A mononucleotide repeat sequence (CCCC...CCCTCCCCCC) between nucleotides 303 and 316-318 (D310) was identified in mtDNA.
Results
Depending on alterations in the D310 mononucleotide repeat, subjects were categorized into 4 subgroups: 7-C, 8-C, 9 or 10-C, and T-to-C transition. Oxidative stress was higher in chronic dialysis patients, evidenced by higher levels of TBARS and mtDNA copy number, and a lower level of free thiol. The distribution of 7-C, 8-C, and 9-10C in dialysis and control subjects was as follows: 7-C (38% vs. 31.5%), 8-C (35.3% vs. 43.2%), and 9-10C (24.5% vs. 22.1%). Although there were significant differences in levels of TBARS, free thiol, and the mtDNA copy number in the D310 repeat subgroups (except T-to-C transition) between dialysis patients and control subjects, post hoc analyses within the same study cohort revealed no significant differences.
Conclusion
Although oxidative stress was elevated in chronic dialysis patients and resulted in a compensatory increase in the mtDNA copy number, homopolymeric C repeats in the mtDNA region (D310), susceptible to ROS, were not associated with oxidative stress markers in these patients.
doi:10.1186/1477-5751-8-10
PMCID: PMC2777840  PMID: 19889239
12.  Partial Correlation Estimation by Joint Sparse Regression Models 
In this paper, we propose a computationally efficient approach —space(Sparse PArtial Correlation Estimation)— for selecting non-zero partial correlations under the high-dimension-low-sample-size setting. This method assumes the overall sparsity of the partial correlation matrix and employs sparse regression techniques for model fitting. We illustrate the performance of space by extensive simulation studies. It is shown that space performs well in both non-zero partial correlation selection and the identification of hub variables, and also outperforms two existing methods. We then apply space to a microarray breast cancer data set and identify a set of hub genes which may provide important insights on genetic regulatory networks. Finally, we prove that, under a set of suitable assumptions, the proposed procedure is asymptotically consistent in terms of model selection and parameter estimation.
doi:10.1198/jasa.2009.0126
PMCID: PMC2770199  PMID: 19881892
concentration network; high-dimension-low-sample-size; lasso; shooting; genetic regulatory network
13.  Performance Metrics for Liquid Chromatography-Tandem Mass Spectrometry Systems in Proteomics Analyses* 
A major unmet need in LC-MS/MS-based proteomics analyses is a set of tools for quantitative assessment of system performance and evaluation of technical variability. Here we describe 46 system performance metrics for monitoring chromatographic performance, electrospray source stability, MS1 and MS2 signals, dynamic sampling of ions for MS/MS, and peptide identification. Applied to data sets from replicate LC-MS/MS analyses, these metrics displayed consistent, reasonable responses to controlled perturbations. The metrics typically displayed variations less than 10% and thus can reveal even subtle differences in performance of system components. Analyses of data from interlaboratory studies conducted under a common standard operating procedure identified outlier data and provided clues to specific causes. Moreover, interlaboratory variation reflected by the metrics indicates which system components vary the most between laboratories. Application of these metrics enables rational, quantitative quality assessment for proteomics and other LC-MS/MS analytical applications.
doi:10.1074/mcp.M900223-MCP200
PMCID: PMC2830836  PMID: 19837981
14.  Molecular Profiling of Breast Cancer Cell Lines Defines Relevant Tumor Models and Provides a Resource for Cancer Gene Discovery 
PLoS ONE  2009;4(7):e6146.
Background
Breast cancer cell lines have been used widely to investigate breast cancer pathobiology and new therapies. Breast cancer is a molecularly heterogeneous disease, and it is important to understand how well and which cell lines best model that diversity. In particular, microarray studies have identified molecular subtypes–luminal A, luminal B, ERBB2-associated, basal-like and normal-like–with characteristic gene-expression patterns and underlying DNA copy number alterations (CNAs). Here, we studied a collection of breast cancer cell lines to catalog molecular profiles and to assess their relation to breast cancer subtypes.
Methods
Whole-genome DNA microarrays were used to profile gene expression and CNAs in a collection of 52 widely-used breast cancer cell lines, and comparisons were made to existing profiles of primary breast tumors. Hierarchical clustering was used to identify gene-expression subtypes, and Gene Set Enrichment Analysis (GSEA) to discover biological features of those subtypes. Genomic and transcriptional profiles were integrated to discover within high-amplitude CNAs candidate cancer genes with coordinately altered gene copy number and expression.
Findings
Transcriptional profiling of breast cancer cell lines identified one luminal and two basal-like (A and B) subtypes. Luminal lines displayed an estrogen receptor (ER) signature and resembled luminal-A/B tumors, basal-A lines were associated with ETS-pathway and BRCA1 signatures and resembled basal-like tumors, and basal-B lines displayed mesenchymal and stem/progenitor-cell characteristics. Compared to tumors, cell lines exhibited similar patterns of CNA, but an overall higher complexity of CNA (genetically simple luminal-A tumors were not represented), and only partial conservation of subtype-specific CNAs. We identified 80 high-level DNA amplifications and 13 multi-copy deletions, and the resident genes with concomitantly altered gene-expression, highlighting known and novel candidate breast cancer genes.
Conclusions
Overall, breast cancer cell lines were genetically more complex than tumors, but retained expression patterns with relevance to the luminal-basal subtype distinction. The compendium of molecular profiles defines cell lines suitable for investigations of subtype-specific pathobiology, cancer stem cell biology, biomarkers and therapies, and provides a resource for discovery of new breast cancer genes.
doi:10.1371/journal.pone.0006146
PMCID: PMC2702084  PMID: 19582160
15.  Subcellular Localization of Thiol-Capped CdTe Quantum Dots in Living Cells 
Nanoscale Research Letters  2009;4(7):606-612.
Internalization and dynamic subcellular distribution of thiol-capped CdTe quantum dots (QDs) in living cells were studied by means of laser scanning confocal microscopy. These unfunctionalized QDs were well internalized into human hepatocellular carcinoma and rat basophilic leukemia cells in vitro. Co-localizations of QDs with lysosomes and Golgi complexes were observed, indicating that in addition to the well-known endosome-lysosome endocytosis pathway, the Golgi complex is also a main destination of the endocytosed QDs. The movement of the endocytosed QDs toward the Golgi complex in the perinuclear region of the cell was demonstrated.
Electronic supplementary material
The online version of this article (doi:10.1007/s11671-009-9307-9) contains supplementary material, which is available to authorized users.
doi:10.1007/s11671-009-9307-9
PMCID: PMC2893999  PMID: 20596411
Cells; Confocal microscopy; Imaging; Quantum dots; Subcellular localization
16.  Subcellular Localization of Thiol-Capped CdTe Quantum Dots in Living Cells 
Nanoscale Research Letters  2009;4(7):606-612.
Internalization and dynamic subcellular distribution of thiol-capped CdTe quantum dots (QDs) in living cells were studied by means of laser scanning confocal microscopy. These unfunctionalized QDs were well internalized into human hepatocellular carcinoma and rat basophilic leukemia cells in vitro. Co-localizations of QDs with lysosomes and Golgi complexes were observed, indicating that in addition to the well-known endosome-lysosome endocytosis pathway, the Golgi complex is also a main destination of the endocytosed QDs. The movement of the endocytosed QDs toward the Golgi complex in the perinuclear region of the cell was demonstrated.
doi:10.1007/s11671-009-9307-9
PMCID: PMC2893999  PMID: 20596411
Cells; Confocal microscopy; Imaging; Quantum dots; Subcellular localization

Results 1-16 (16)