Search tips
Search criteria

Results 1-15 (15)

Clipboard (0)
more »
Year of Publication
Document Types
Journal of statistical research  2010;44(1):103-107.
In a recent paper [4], Efron pointed out that an important issue in large-scale multiple hypothesis testing is that the null distribution may be unknown and need to be estimated. Consider a Gaussian mixture model, where the null distribution is known to be normal but both null parameters-the mean and the variance-are unknown. We address the problem with a method based on Fourier transformation. The Fourier approach was first studied by Jin and Cai [9], which focuses on the scenario where any non-null effect has either the same or a larger variance than that of the null effects. In this paper, we review the main ideas in [9], and propose a generalized Fourier approach to tackle the problem under another scenario: any non-null effect has a larger mean than that of the null effects, but no constraint is imposed on the variance. This approach and that in [9] complement with each other: each approach is successful in a wide class of situations where the other fails. Also, we extend the Fourier approach to estimate the proportion of non-null effects. The proposed procedures perform well both in theory and on simulated data.
PMCID: PMC3928715  PMID: 24563569
empirical null; Fourier transformation; generalized Fourier transformation; proportion of non-null effects; sample size calculation
2.  Müllerian inhibiting substance is anterogradely transported and does not attenuate avulsion-induced death of hypoglossal motor neurons 
Experimental neurology  2010;231(2):304-308.
Müllerian Inhibiting Substance (MIS, Anti-Müllerian hormone) is a gonadal hormone that contributes to the subtle sex-biases in the nervous system. Mature neurons of both sexes also produce MIS, suggesting that MIS may be a paracrine regulator of adult neural networks. We report here that murine hypoglossal motor neurons produce MIS and its receptors, MISRII and bone morphogenetic protein receptor 1A (BMPR1A, ALK3), but differentially transport them, with only MIS being detectable in axons. The production of MIS and its receptors were rapidly down regulated after axonal damage, which is a characteristic of genes involved in mature neuronal function. MIS is a survival factor for embryonic spinal motor neurons, but the rate of cell loss after hypoglossal nerve avulsion was normal in Mis−/− mice and was not attenuated by intraventricular administration of MIS. These observations suggest that MIS may be involved in anterograde rather than autocrine or retrograde regulation of neurons.
PMCID: PMC3797533  PMID: 21195071
Axonal transport; Avulsion; MISRII; ALK3
3.  Blood-Based Detection of Radiation Exposure in Humans Based on Novel Phospho-Smc1 ELISA 
Radiation Research  2010;175(3):266-281.
The structural maintenance of chromosome 1 (Smc1) protein is a member of the highly conserved cohesin complex and is involved in sister chromatid cohesion. In response to ionizing radiation, Smc1 is phosphorylated at two sites, Ser-957 and Ser-966, and these phosphorylation events are dependent on the ATM protein kinase. In this study, we describe the generation of two novel ELISAs for quantifying phospho-Smc1Ser-957 and phospho-Smc1Ser-966. Using these novel assays, we quantify the kinetic and biodosimetric responses of human cells of hematological origin, including immortalized cells, as well as both quiescent and cycling primary human PBMC. Additionally, we demonstrate a robust in vivo response for phospho-Smc1Ser-957 and phospho-Smc1Ser-966 in lymphocytes of human patients after therapeutic exposure to ionizing radiation, including total-body irradiation, partial-body irradiation, and internal exposure to 131I. These assays are useful for quantifying the DNA damage response in experimental systems and potentially for the identification of individuals exposed to radiation after a radiological incident.
PMCID: PMC3123689  PMID: 21388270
4.  Deconstructing Pancreas Development to Reconstruct Human Islets from Pluripotent Stem Cells 
Cell stem cell  2010;6(4):300-308.
There is considerable excitement about harnessing the potential of human stem cells to replace pancreatic islets that are destroyed in type 1 diabetes mellitus. However, our current understanding of the mechanisms underlying pancreas and islet ontogeny has come largely from the powerful genetic, developmental, and embryological approaches available in nonhuman organisms. Successful islet reconstruction from human pluripotent cells will require greater attention to “deconstructing” human pancreas and islet developmental biology and consistent application of conditional genetics, lineage tracing, and cell purification to stem cell biology.
PMCID: PMC3148083  PMID: 20362535
5.  Association analyses identify six new psoriasis susceptibility loci in the Chinese population 
Nature genetics  2010;42(11):1005-1009.
We extended our previous GWAS for psoriasis with a a multistage replication study including 8,312 cases and 12,919 controls from China as well as 3,293 cases, 4,188 controls from Germany and the USA, and 254 nuclear families from the USA. We identified 6 new susceptibility loci associated to psoriasis in Chinese, containing candidate genes ERAP1, PTTG1, CSMD1, GJB2, SERPINB8, ZNF816A (PCombined<5×10−8) and replicated one locus 5q33.1 (TNIP1/ANXA6) previously reported (PCombined=3.8×10−21) in European studies. Two of these loci showed evidence for association evidence in the German study, at ZNF816A and GJB2 with P=3.6×10−3 and P=7.9×10−3, respectively. ERAP1 and ZNF816A were preferentially associated with Type I (early onset) psoriasis in Chinese Han population (test for heterogeneity P=6.5×10−3 and P=1.5×10−3, respectively). Comparisons with previous GWAS of psoriasis highlight the heterogeneity of disease susceptibility between Chinese and European populations. Our study identifies new genetic susceptibility factors and suggests new biological pathways in psoriasis.
PMCID: PMC3140436  PMID: 20953187
6.  Repeatability and Reproducibility in Proteomic Identifications by Liquid Chromatography—Tandem Mass Spectrometry 
The complexity of proteomic instrumentation for LC-MS/MS introduces many possible sources of variability. Data-dependent sampling of peptides constitutes a stochastic element at the heart of discovery proteomics. Although this variation impacts the identification of peptides, proteomic identifications are far from completely random. In this study, we analyzed interlaboratory data sets from the NCI Clinical Proteomic Technology Assessment for Cancer to examine repeatability and reproducibility in peptide and protein identifications. Included data spanned 144 LC-MS/MS experiments on four Thermo LTQ and four Orbitrap instruments. Samples included yeast lysate, the NCI-20 defined dynamic range protein mix, and the Sigma UPS 1 defined equimolar protein mix. Some of our findings reinforced conventional wisdom, such as repeatability and reproducibility being higher for proteins than for peptides. Most lessons from the data, however, were more subtle. Orbitraps proved capable of higher repeatability and reproducibility, but aberrant performance occasionally erased these gains. Even the simplest protein digestions yielded more peptide ions than LC-MS/MS could identify during a single experiment. We observed that peptide lists from pairs of technical replicates overlapped by 35–60%, giving a range for peptide-level repeatability in these experiments. Sample complexity did not appear to affect peptide identification repeatability, even as numbers of identified spectra changed by an order of magnitude. Statistical analysis of protein spectral counts revealed greater stability across technical replicates for Orbitraps, making them superior to LTQ instruments for biomarker candidate discovery. The most repeatable peptides were those corresponding to conventional tryptic cleavage sites, those that produced intense MS signals, and those that resulted from proteins generating many distinct peptides. Reproducibility among different instruments of the same type lagged behind repeatability of technical replicates on a single instrument by several percent. These findings reinforce the importance of evaluating repeatability as a fundamental characteristic of analytical technologies.
PMCID: PMC2818771  PMID: 19921851
7.  Role of Myo-Inositol by Magnetic Resonance Spectroscopy in Early Diagnosis of Alzheimer's Disease in APP/PS1 Transgenic Mice 
To explore the potential value of myo-inositol (mIns), which is regarded as a biomarker for early diagnosis of Alzheimer's disease, in APP/PS1 transgenic (tg) mice detected by 1H-MRS.
1H-MRS was performed in 30 APP/PS1 tg mice and 20 wild-type (wt) littermates at 3, 5 and 8 months of age. Areas under the peak of N-acetylaspartate (NAA), mIns and creatine (Cr) in the frontal cortex and hippocampus were measured, and the NAA/Cr and mIns/Cr ratios were analyzed quantitatively.
Compared with the wt mice, the mIns/Cr ratio of the 3-month-old tg mice was significantly higher (p < 0.05), and pathology showed activation and proliferation of astrocytes in the frontal cortex and hippocampus. The concentration of NAA was significantly lower at 8 and 8 months of age (p < 0.05). According to the threshold of mIns/Cr that was adopted to separate the tg from the wt mice, the rate of correct predictions was 82, 94 and 95%, respectively, for 3, 5 and 8 months.
Of the early AD metabolites as detected by 1H-MRS, mIns is the most valuable marker for assessment of AD. Quantitative analysis of mIns may provide important clues for early diagnosis of AD.
PMCID: PMC2837893  PMID: 20093832
Alzheimer's disease; Magnetic resonance spectroscopy; Astrocyte; Myo-inositol
8.  Improvement of mechanical heart function by trimetazidine in db/db mice 
Acta pharmacologica Sinica  2010;31(5):560-569.
To investigate the influence of trimetazidine, which is known to be an antioxidant and modulator of metabolism, on cardiac function and the development of diabetic cardiomyopathy in db/db mouse.
Trimetazidine was administered to db/db mice for eight weeks. Cardiac function was measured by inserting a Millar catheter into the left ventricle, and oxidative stress and AMP-activated protein kinase (AMPK) activity in the myocardium were evaluated.
Untreated db/db mice exhibited a significant decrease in cardiac function compared to normal C57 mice. Oxidative stress and lipid deposition were markedly increased in the myocardium, concomitant with inactivation of AMPK and increased expression of peroxisome proliferator-activated receptor coactivator-1α (PGC-1α). Trimetazidine significantly improved systolic and diastolic function in hearts of db/db mice and led to reduced production of reactive oxygen species and deposition of fatty acid in cardiomyocytes. Trimetazidine also caused AMPK activation and reduced PGC-1α expression in the hearts of db/db mice.
The data suggest that trimetazidine significantly improves cardiac function in db/db mice by attenuating lipotoxicity and improving the oxidation status of the heart. Activation of AMPK and decreased expression of PGC-1α were involved in this process. Furthermore, our study suggests that trimetazidine suppresses the development of diabetic cardiomyopathy, which warrants further clinical investigation.
PMCID: PMC2953963  PMID: 20383170
cardiac protection; cardiomyopathy; diabetes; diabetic cardiovascular complications; mice; mitochondria; heart; oxidative stress
9.  Novel proteins associated with risk for coronary heart disease or stroke among postmenopausal women identified by in-depth plasma proteome profiling 
Genome Medicine  2010;2(7):48.
Coronary heart disease (CHD) and stroke were key outcomes in the Women's Health Initiative (WHI) randomized trials of postmenopausal estrogen and estrogen plus progestin therapy. We recently reported a large number of changes in blood protein concentrations in the first year following randomization in these trials using an in-depth quantitative proteomics approach. However, even though many affected proteins are in pathways relevant to the observed clinical effects, the relationships of these proteins to CHD and stroke risk among postmenopausal women remains substantially unknown.
The same in-depth proteomics platform was applied to plasma samples, obtained at enrollment in the WHI Observational Study, from 800 women who developed CHD and 800 women who developed stroke during cohort follow-up, and from 1-1 matched controls. A plasma pooling strategy, followed by extensive fractionation prior to mass spectrometry, was used to identify proteins related to disease incidence, and the overlap of these proteins with those affected by hormone therapy was examined. Replication studies, using enzyme-linked-immunosorbent assay (ELISA), were carried out in the WHI hormone therapy trial cohorts.
Case versus control concentration differences were suggested for 37 proteins (nominal P < 0.05) for CHD, with three proteins, beta-2 microglobulin (B2M), alpha-1-acid glycoprotein 1 (ORM1), and insulin-like growth factor binding protein acid labile subunit (IGFALS) having a false discovery rate < 0.05. Corresponding numbers for stroke were 47 proteins with nominal P < 0.05, three of which, apolipoprotein A-II precursor (APOA2), peptidyl-prolyl isomerase A (PPIA), and insulin-like growth factor binding protein 4 (IGFBP4), have a false discovery rate < 0.05. Other proteins involved in insulin-like growth factor signaling were also highly ranked. The associations of B2M with CHD (P < 0.001) and IGFBP4 with stroke (P = 0.005) were confirmed using ELISA in replication studies, and changes in these proteins following the initiation of hormone therapy use were shown to have potential to help explain hormone therapy effects on those diseases.
In-depth proteomic discovery analysis of prediagnostic plasma samples identified B2M and IGFBP4 as risk markers for CHD and stroke respectively, and provided a number of candidate markers of disease risk and candidate mediators of hormone therapy effects on CHD and stroke.
Clinical Trials Registration identifier: NCT00000611
PMCID: PMC2923740  PMID: 20667078
10.  Small-interfering RNA-mediated silencing of the MAPK p42 gene induces dual effects in HeLa cells 
Oncology Letters  2010;1(4):649-655.
The genesis and progression of cervical cancer involve the mutation or deviant expression of numerous genes, including the activation of oncogenes (Ha-ras, C-myc, C-erbB2 and Bcl-2) and inactivation of tumor-suppressor genes (p53 and Rb). Previous studies showed that small-interfering RNAs (siRNAs) targeting the MAPK p42 gene partly inhibit proliferation and increase apoptosis in human cervical carcinoma HeLa cells. Results of a microarray analysis showed that MAPK p42 siRNA inhibited cell growth through the regulation of cell cycle control and apoptosis and induced interferon-like response in HeLa cells. In order to confirm the dual effects of MAPK p42 siRNA, we compared the roles of siRNA and U0126, an inhibitor of MAPK p42, in HeLa cells. Short 21-mer double-stranded/siRNAs were synthesized to target MAPK p42 mRNA in HeLa cells. The siRNAs were transfected into HeLa cells using Lipofectamine. The cells were treated with siRNA or U0126 at different concentrations for a period of 48 h. The biological effect of siRNA and U0126 on HeLa cells was measured by MTT and flow cytometry. MAPK1, NUP188, P38, STAT1, STAT2, PML and OAS1 were analyzed by real-time quantitative PCR. HeLa cell growth was inhibited by siRNA or U0126, and the effect of siRNA inhibition was greater than that of U0126. Cell cycle phases were different for siRNA or U0126, but HeLa cell growth was arrested at the S phase by siRNA and at G1 phase by U0126. A down-regulation in MAPK p42 expression by siRNA and up-regulation by U0126 were noted. The results of real-time quantitative PCR showed that P38 was up-regulated and NUP188 was down-regulated by siRNA in comparison with the control groups, and the results were consistent with those of U0126. Expression levels of STAT1, STAT2, PML and OAS1 induced by siRNA differed from those induced by U0126. siRNA-mediated silencing and deactivation induced by U0126 in MAPK p42 led to growth inhibition in the HeLa cells. The effects of siRNA on HeLa cell growth were different from those of U0126. Dual effects of MAPK p42 siRNA-2 on HeLa cell growth were noted: one consisted of a specific effect induced by siRNA-mediated p42 MAPK silencing and the other exhibited a non-specific interferon-like response.
PMCID: PMC3436355  PMID: 22966358
interferon-like response; targeting response; MAPK p42; RNA interference
11.  Integrative analysis of DNA copy number and gene expression in metastatic oral squamous cell carcinoma identifies genes associated with poor survival 
Molecular Cancer  2010;9:143.
Lymphotropism in oral squamous cell carcinoma (OSCC) is one of the most important prognostic factors of 5-year survival. In an effort to identify genes that may be responsible for the initiation of OSCC lymphotropism, we examined DNA copy number gains and losses and corresponding gene expression changes from tumor cells in metastatic lymph nodes of patients with OSCC.
We performed integrative analysis of DNA copy number alterations (CNA) and corresponding mRNA expression from OSCC cells isolated from metastatic lymph nodes of 20 patients using Affymetrix 250 K Nsp I SNP and U133 Plus 2.0 arrays, respectively. Overall, genome CNA accounted for expression changes in 31% of the transcripts studied. Genome region 11q13.2-11q13.3 shows the highest correlation between DNA CNA and expression. With a false discovery rate < 1%, 530 transcripts (461 genes) demonstrated a correlation between CNA and expression. Among these, we found two subsets that were significantly associated with OSCC (n = 122) when compared to controls, and with survival (n = 27), as tested using an independent dataset with genome-wide expression profiles for 148 primary OSCC and 45 normal oral mucosa. We fit Cox models to calculate a principal component analysis-derived risk-score for these two gene sets ('122-' or '27-transcript PC'). The models combining the 122- or 27-transcript PC with stage outperformed the model using stage alone in terms of the Area Under the Curve (AUC = 0.82 or 0.86 vs. 0.72, with p = 0.044 or 0.011, respectively).
Genes exhibiting CNA-correlated expression may have biological impact on carcinogenesis and cancer progression in OSCC. Determination of copy number-associated transcripts associated with clinical outcomes in tumor cells with an aggressive phenotype (i.e., cells metastasized to the lymph nodes) can help prioritize candidate transcripts from high-throughput data for further studies.
PMCID: PMC2893102  PMID: 20537188
12.  Prevalence of Risk Factors for Cardiovascular Disease and Their Associations with Diet and Physical Activity in Suburban Beijing, China 
Journal of Epidemiology  2010;20(3):237-243.
We calculated new prevalences of risk factors for cardiovascular disease (CVD) and examined their associations with dietary habits and physical activity in a suburban area of Beijing—one of the most urbanized cities in China.
In 2007, a cross-sectional survey of a representative sample of 19 003 suburban residents aged 18 to 76 years was conducted. Dietary and anthropometric data were collected by questionnaire, and blood pressure, fasting blood glucose, and serum lipids were measured.
The age-standardized prevalences of the CVD risk factors overweight/obesity, diabetes, hypertension, dyslipidemia, and metabolic syndrome (MS) were 31.9%, 6.1%, 33.6%, 30.3%, and 11.6%, respectively. The adjusted odd ratios (95% confidence interval [CI]) of overweight/obesity, diabetes, hypertension, dyslipidemia, and MS for participants who were physically active, as compared with those who were not physically active, were 0.67 (0.47 to 0.85), 0.87 (0.80 to 0.95), 0.92 (0.87 to 0.98), 0.89 (0.82 to 0.96), and 0.74 (0.62 to 0.89), respectively. The adjusted odds ratios (95% CI) of hypertension and MS for participants with a high intake of salt, as compared with those without a high intake of salt, were 1.72 (1.29 to 2.03) and 1.48 (1.16 to 1.77), respectively. In addition, participants who consumed a high-fat diet were more likely to be overweight/obese and dyslipidemic, whereas vegetarians had less risk of overweight/obesity, diabetes, hypertension, dyslipidemia, and MS.
In this population of adults living in suburban Beijing, there were relatively high prevalences of the CVD risk factors overweight/obesity, diabetes, hypertension, dyslipidemia, and MS. Healthy dietary habits and physical activity may reduce the risks of these conditions.
PMCID: PMC3900847  PMID: 20431234
cardiovascular disease; risk factors; associations; dietary habits; physical activity
13.  Bis(ethyl­enediammonium) tetra­deca­borate 
The title compound, 2C2H10N2 2+·B14O20(OH)6 4−, consists of a centrosymmetric tetra­deca­borate anion and two ethyl­enediammonium cations. The anions are inter­connected through strong O—H⋯O hydrogen bonds into a three-dimensional supra­molecular network with channels along [100], [010], [001] and [111]. The diprotonated cations reside in the channels and inter­act with the inorganic framework by extensive N—H⋯O hydrogen bonds.
PMCID: PMC2983971  PMID: 21580636
14.  Generation, Purification and Transplantation of Photoreceptors Derived from Human Induced Pluripotent Stem Cells 
PLoS ONE  2010;5(1):e8763.
Inherited and acquired retinal degenerations are frequent causes of visual impairment and photoreceptor cell replacement therapy may restore visual function to these individuals. To provide a source of new retinal neurons for cell based therapies, we developed methods to derive retinal progenitors from human ES cells.
Methodology/Physical Findings
In this report we have used a similar method to direct induced pluripotent stem cells (iPS) from human fibroblasts to a retinal progenitor fate, competent to generate photoreceptors. We also found we could purify the photoreceptors derived from the iPS cells using fluorescence activated cell sorting (FACS) after labeling photoreceptors with a lentivirus driving GFP from the IRBP cis-regulatory sequences. Moreover, we found that when we transplanted the FACS purified iPSC derived photoreceptors, they were able to integrate into a normal mouse retina and express photoreceptor markers.
This report provides evidence that enriched populations of human photoreceptors can be derived from iPS cells.
PMCID: PMC2808350  PMID: 20098701
15.  Myocardial deletion of Smad4 using a novel α skeletal muscle actin Cre recombinase transgenic mouse causes misalignment of the cardiac outflow tract 
SMAD4 acts as the converging point for TGFβ and BMP signaling in heart development. Here, we investigated the role of SMAD4 in heart development using a novel α skeletal muscle actin Cre recombinase (MuCre) transgenic mouse strain. Lineage tracing using MuCre/ROSA26LacZ reporter mice indicated strong Cre-recombinase expression in developing and adult heart and skeletal muscles. In heart development, significant MuCre expression was noted at E11.5 in the atrial, ventricular, outflow tract and atrioventricular canal myocardium, but not in the endocardial cushions. MuCre-driven conditional deletion of Smad4 in mice caused double outlet right ventricle (DORV), ventricular septal defect (VSD), impaired trabeculation and thinning of ventricular myocardium, and mid-gestational embryonic lethality. In conclusion, MuCre mice effectively delete genes in both heart and skeletal muscles, thus enabling the discovery that myocardial Smad4 deletion causes misalignment of the outflow tract and DORV.
PMCID: PMC2945925  PMID: 20877696
heart; myogenesis; transforming growth factor beta; SMAD; Marfan syndrome.

Results 1-15 (15)