PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-20 (20)
 

Clipboard (0)
None
Journals
more »
Year of Publication
1.  Extensive and coordinated transcription of noncoding RNAs within cell cycle promoters 
Nature genetics  2011;43(7):621-629.
Transcription of long noncoding RNAs (lncRNAs) within gene regulatory elements can modulate gene activity in response to external stimuli, but the scope and functions of such activity are not known. Here we use an ultra-high density array that tiles the promoters of 56 cell cycle genes to interrogate 108 samples representing diverse perturbations. We identify 216 transcribed regions that encode putative lncRNAs--many with RT-PCR-validated periodic expression during the cell cycle, show altered expression in human cancers, and are regulated in expression by specific oncogenic stimuli, stem cell differentiation, or DNA damage. DNA damage induces five lncRNAs from the CDKN1A promoter, and one such lncRNA, named PANDA, is induced in a p53- dependent manner. PANDA interacts with the transcription factor NF-YA to limit expression of pro-apoptotic genes; PANDA depletion markedly sensitized human fibroblasts to apoptosis by doxorubicin. These findings suggest potentially widespread roles for promoter lncRNAs in cell growth control.
doi:10.1038/ng.848
PMCID: PMC3652667  PMID: 21642992
2.  Protein phosphatase PP6 is required for homology-directed repair of DNA double-strand breaks 
Cell Cycle  2011;10(9):1411-1419.
DNA double-strand breaks (DSBs) are among the most lethal lesions associated with genome stability, which, when destabilized, predisposes organs to cancers. DSBs are primarily fixed either with little fidelity by non-homologous end joining (NHEJ) repair or with high fidelity by homology-directed repair (HDR). The phosphorylated form of H2AX on serine 139 (γ-H2AX) is a marker of DSBs. In this study, we explored if the protein phosphatase PP6 is involved in DSB repair by depletion of its expression in human cancer cell lines, and determined PP6 expression in human breast cancer tissues by immunohistochemistry staining. We found that bacterially produced PP6c (the catalytic subunit of PP6)-containing heterotrimeric combinations exhibit phosphatase activity against γ-H2AX in the in vitro phosphatase assays. Depletion of PP6c or PP6R2 led to persistent high levels of γ-H2AX after DNA damage and a defective HDR. Chromatin immunoprecipitation assays demonstrated that PP6c was recruited to the region adjacent to the DSB sites. Expression of PP6c, PP6R2 and PP6R3 in human breast tumors was significantly lower than those in benign breast diseases. Taken together, our results suggest that γ-H2AX is a physiological substrate of PP6 and PP6 is required for HDR and its expression may harbor a protective role during the development of breast cancer.
doi:10.4161/cc.10.9.15479
PMCID: PMC3117043  PMID: 21451261
protein phosphatase; PP6; γ-H2AX; DNA double-strand break; homology-directed repair
3.  Proteome and Transcriptome Profiles of a Her2/Neu-driven Mouse Model of Breast Cancer 
Proteomics. Clinical applications  2011;5(3-4):179-188.
Purpose
We generated extensive transcriptional and proteomic profiles from a Her2-driven mouse model of breast cancer that closely recapitulates human breast cancer. This report makes these data publicly available in raw and processed forms, as a resource to the community. Importantly, we previously made biospecimens from this same mouse model freely available through a sample repository, so researchers can obtain samples to test biological hypotheses without the need of breeding animals and collecting biospecimens.
Experimental design
Twelve datasets are available, encompassing 841 LC-MS/MS experiments (plasma and tissues) and 255 microarray analyses of multiple tissues (thymus, spleen, liver, blood cells, and breast). Cases and controls were rigorously paired to avoid bias.
Results
In total, 18,880 unique peptides were identified (PeptideProphet peptide error rate ≤1%), with 3884 and 1659 non-redundant protein groups identified in plasma and tissue datasets, respectively. Sixty-one of these protein groups overlapped between cancer plasma and cancer tissue.
Conclusions and clinical relevance
These data are of use for advancing our understanding of cancer biology, for software and quality control tool development, investigations of analytical variation in MS/MS data, and selection of proteotypic peptides for MRM-MS. The availability of these datasets will contribute positively to clinical proteomics.
doi:10.1002/prca.201000037
PMCID: PMC3069718  PMID: 21448875
Breast cancer; Her2; mouse; proteome; transcriptome
4.  Learning oncogenic pathways from binary genomic instability data 
Biometrics  2011;67(1):164-173.
Summary
Genomic instability, the propensity of aberrations in chromosomes, plays a critical role in the development of many diseases. High throughput genotyping experiments have been performed to study genomic instability in diseases. The output of such experiments can be summarized as high dimensional binary vectors, where each binary variable records aberration status at one marker locus. It is of keen interest to understand how aberrations may interact with each other, as it provides insight into the process of the disease development. In this paper, we propose a novel method, LogitNet, to infer such interactions among these aberration events. The method is based on penalized logistic regression with an extension to account for spatial correlation in the genomic instability data. We conduct extensive simulation studies and show that the proposed method performs well in the situations considered. Finally, we illustrate the method using genomic instability data from breast cancer samples.
doi:10.1111/j.1541-0420.2010.01417.x
PMCID: PMC3020238  PMID: 20377578
Conditional Dependence; Graphical Model; Lasso; Loss-of-Heterozygosity; Regularized Logistic Regression
5.  A targeted proteomics–based pipeline for verification of biomarkers in plasma 
Nature biotechnology  2011;29(7):625-634.
High-throughput technologies can now identify hundreds of candidate protein biomarkers for any disease with relative ease. However, because there are no assays for the majority of proteins and de novo immunoassay development is prohibitively expensive, few candidate biomarkers are tested in clinical studies. We tested whether the analytical performance of a biomarker identification pipeline based on targeted mass spectrometry would be sufficient for data-dependent prioritization of candidate biomarkers, de novo development of assays and multiplexed biomarker verification. We used a data-dependent triage process to prioritize a subset of putative plasma biomarkers from >1,000 candidates previously identified using a mouse model of breast cancer. Eighty-eight novel quantitative assays based on selected reaction monitoring mass spectrometry were developed, multiplexed and evaluated in 80 plasma samples. Thirty-six proteins were verified as being elevated in the plasma of tumor-bearing animals. The analytical performance of this pipeline suggests that it should support the use of an analogous approach with human samples.
doi:10.1038/nbt.1900
PMCID: PMC3232032  PMID: 21685906
6.  The Relationship between Brown Adipose Tissue Activity and Neoplastic Status: an 18F-FDG PET/CT Study in the Tropics 
Background
Brown adipose tissue (BAT) has thermogenic potential. For its activation, cold exposure is considered a critical factor though other determinants have also been reported. The purpose of this study was to assess the relationship between neoplastic status and BAT activity by 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) in people living in the tropics, where the influence of outdoor temperature was low.
Methods
18F-FDG PET/CT scans were reviewed and the total metabolic activity (TMA) of identified activated BAT quantified. The distribution and TMA of activated BAT were compared between patients with and without a cancer history. The neoplastic status of patients was scored according to their cancer history and 18F-FDG PET/CT findings. We evaluated the relationships between the TMA of BAT and neoplastic status along with other factors: age, body mass index, fasting blood sugar, gender, and outdoor temperature.
Results
Thirty of 1740 patients had activated BAT. Those with a cancer history had wider BAT distribution (p = 0.043) and a higher TMA (p = 0.028) than those without. A higher neoplastic status score was associated with a higher average TMA. Multivariate analyses showed that neoplastic status was the only factor significantly associated with the TMA of activated BAT (p = 0.016).
Conclusions
Neoplastic status is a critical determinant of BAT activity in patients living in the tropics. More active neoplastic status was associated with more vigorous TMA of BAT.
doi:10.1186/1476-511X-10-238
PMCID: PMC3267802  PMID: 22182284
Neoplastic status; BAT; 18F-FDG PET
7.  SNP set analysis for detecting disease association using exon sequence data 
BMC Proceedings  2011;5(Suppl 9):S91.
Rare variants are believed to play an important role in disease etiology. Recent advances in high-throughput sequencing technology enable investigators to systematically characterize the genetic effects of both common and rare variants. We introduce several approaches that simultaneously test the effects of common and rare variants within a single-nucleotide polymorphism (SNP) set based on logistic regression models and logistic kernel machine models. Gene-environment interactions and SNP-SNP interactions are also considered in some of these models. We illustrate the performance of these methods using the unrelated individuals data from Genetic Analysis Workshop 17. Three true disease genes (FLT1, PIK3C3, and KDR) were consistently selected using the proposed methods. In addition, compared to logistic regression models, the logistic kernel machine models were more powerful, presumably because they reduced the effective number of parameters through regularization. Our results also suggest that a screening step is effective in decreasing the number of false-positive findings, which is often a big concern for association studies.
doi:10.1186/1753-6561-5-S9-S91
PMCID: PMC3287933  PMID: 22373133
8.  Relationship of Body Fat and Cardiorespiratory Fitness with Cardiovascular Risk in Chinese Children 
PLoS ONE  2011;6(11):e27896.
Backgrounds/Objectives
Cardiorespiratory fitness (CRF) and body fat play an important role in elevated risk for cardiovascular disease (CVD). However, the combined effects of CRF and obesity on metabolic health in Chinese children are unclear. The purpose of this study was to investigate the independent and combined associations between body fat, CRF, and CVD risk in Chinese schoolchildren.
Methods
The study subjects comprised 676 schoolchildren (392 boys and 284 girls, aged 9.6±0.7 yrs old) in Wuhan, China. Their body mass index (BMI), waist circumference (WC), CRF, blood pressure (BP), lipids, glucose, and pubertal status were assessed. Children were categorized into different groups based on their BMI, WC, and CRF using Chinese obesity cut-off points and CRF sex-specific median points. Metabolic Risk Score (MRS) was computed based on the standardized scores of BP, lipids, and glucose.
Results
Multiple linear regression models showed that, in the separate models, body fat was positively associated with MRS while CRF was inversely associated with MRS (p<0.001). However, when assessed simultaneously, only body fat had a significant association with MRS (p<0.001). In general, low-fit children had a lower MRS compared to their counterparts, and a significant difference between the two extreme groups was observed (low CRF and high fat vs. high CRF and low fat, p<0.001).
Conclusions
These findings suggest that both body fat and CRF should be considered when interpreting CVD risk in Chinese children, while body fat may be correlated with CVD risk more than CRF.
doi:10.1371/journal.pone.0027896
PMCID: PMC3218065  PMID: 22114722
9.  Malignant Mesothelioma Presenting as a Giant Chest, Abdominal and Pelvic Wall Mass 
Korean Journal of Radiology  2011;12(6):750-753.
Malignant mesothelioma (MM) is a relatively rare carcinoma of the mesothelial cells, and it is usually located in the pleural or peritoneal cavity. Here we report on a unique case of MM that developed in the chest, abdominal and pelvic walls in a 77-year-old female patient. CT and MRI revealed mesothelioma that manifested as a giant mass in the right flank and bilateral pelvic walls. The diagnosis was confirmed by the pathology and immunohistochemistry. Though rare, accurate investigation of the radiological features of a body wall MM may help make an exact diagnosis.
doi:10.3348/kjr.2011.12.6.750
PMCID: PMC3194781  PMID: 22043159
Malignant mesothelioma; Pathology; Computed tomography (CT); Magnetic resonance imaging (MRI)
10.  The Shrimp NF-κB Pathway Is Activated by White Spot Syndrome Virus (WSSV) 449 to Facilitate the Expression of WSSV069 (ie1), WSSV303 and WSSV371 
PLoS ONE  2011;6(9):e24773.
The Toll-like receptor (TLR)-mediated NF-κB pathway is essential for defending against viruses in insects and mammals. Viruses also develop strategies to utilize this pathway to benefit their infection and replication in mammal hosts. In invertebrates, the TLR-mediated NF-κB pathway has only been well-studied in insects and has been demonstrated to be important in antiviral responses. However, there are few reports of interactions between viruses and the TLR-mediated NF-κB pathway in invertebrate hosts. Here, we studied Litopenaeus vannamei Pelle, which is the central regulator of the Toll pathway, and proposed that a similar TLR/MyD88/Tube/Pelle/TRAF6/NF-κB cascade may exist in shrimp for immune gene regulation. After performing genome-wild analysis of white spot syndrome virus (WSSV) encoded proteins, we found that WSSV449 shows 15.7-19.4% identity to Tube, which is an important component of the insect Toll pathway. We further found that WSSV449 activated promoters of Toll pathway-controlled antimicrobial peptide genes, indicating WSSV449 has a similar function to host Tube in activating the NF-κB pathway. We suspected that WSSV449 activated the Toll-mediated NF-κB pathway for regulating viral gene expression. To test this hypothesis, we analyzed the promoters of viral genes and found 40 promoters that possess NF-κB binding sites. A promoter screen showed that the promoter activities of WSSV069 (ie1), WSSV303 and WSSV371 can be highly induced by the shrimp NF-κB family protein LvDorsal. WSSV449 also induced these three viral promoter activities by activating the NF-κB pathway. To our knowledge, this is the first report of a virus that encodes a protein similar to the Toll pathway component Tube to upregulate gene expression in the invertebrate host.
doi:10.1371/journal.pone.0024773
PMCID: PMC3171479  PMID: 21931849
11.  Targeting SOX17 in human embryonic stem cells creates unique strategies for isolating and analyzing developing endoderm 
Cell stem cell  2011;8(3):335-346.
Investigating development of inaccessible human tissues like embryonic endoderm with embryonic stem cell (ESC) has been hindered by a lack of methods for marking and isolating endodermal cells, and tracing fates of their progeny toward differentiated lineages. Using homologous recombination in human ESC, we inserted an enhanced green fluorescent protein (eGFP) transgene into a locus encoding a postulated marker of human endoderm, SOX17, permitting purification of SOX17+ hESC progeny by fluorescence activated cell sorting (FACS). Microarray studies revealed a unique gene expression profile of human SOX17+ cells including endodermal marker enrichment, and unveiled specific cell surface protein combinations that permitted FACS-based isolation of primitive gut tube endodermal cells produced from unmodified human ESCs and from induced pluripotent stem cells (iPSC). FACS-isolated SOX17+ endodermal cells differentiated to progeny expressing markers of liver, pancreas, and intestinal epithelium, providing unprecedented evidence that human gastrointestinal lineages derive from SOX17+ cells. Thus, prospective isolation, lineage tracing, and developmental studies of hESCs described here have revealed fundamental aspects of human endodermal biology.
doi:10.1016/j.stem.2011.01.017
PMCID: PMC3063711  PMID: 21362573
12.  PP1A-Mediated Dephosphorylation Positively Regulates YAP2 Activity 
PLoS ONE  2011;6(9):e24288.
Background
The Hippo/MST1 signaling pathway plays an important role in the regulation of cell proliferation and apoptosis. As a major downstream target of the Hippo/MST1 pathway, YAP2 (Yes-associated protein 2) functions as a transcriptional cofactor that has been implicated in many biological processes, including organ size control and cancer development. MST1/Lats kinase inhibits YAP2's nuclear accumulation and transcriptional activity through inducing the phosphorylation at serine 127 and the sequential association with 14-3-3 proteins. However, the dephosphorylation of YAP2 is not fully appreciated.
Methodology/Principal Findings
In the present study, we demonstrate that PP1A (catalytic subunit of protein phosphatase-1) interacts with and dephosphorylates YAP2 in vitro and in vivo, and PP1A-mediated dephosphorylation induces the nuclear accumulation and transcriptional activation of YAP2. Inhibition of PP1 by okadiac acid (OA) increases the phosphorylation at serine 127 and cytoplasmic translocation of YAP2 proteins, thereby mitigating its transcription activity. PP1A expression enhances YAP2's pro-survival capability and YAP2 knockdown sensitizes ovarian cancer cells to cisplatin treatment.
Conclusions/Significance
Our findings define a novel molecular mechanism that YAP2 is positively regulated by PP1-mediated dephosphorylation in the cell survival.
doi:10.1371/journal.pone.0024288
PMCID: PMC3164728  PMID: 21909427
13.  catena-Poly[[cadmium-bis­(μ-triethyl­ene­tetra­mine-κ4 N,N′:N′′,N′′′)-cadmium-(μ-triethyl­ene­tetra­mine-κ4 N,N′:N′′,N′′′)] hexa­fluoridogermanate] 
The title fluoridogermanate, {[Cd2(C6H18N4)3][GeF6]}n, was synthesized hydro­thermally. The crystal structure comprises undulated cationic [Cd2(TETA)3]4+ chains (TETA is triethyl­ene­tetra­mine) propagating parallel to [101]. The central CdII atom is six-coordinated in a CdN6 set by three TETA ligands. The isolated [GeF6]2− units, serving as counter-anions, occupy the inter-chain spaces and simultaneously link adjacent chains into a three-dimensional network through extensive N—H⋯F hydrogen-bonding inter­actions. One of the ethyl­ene bridges of one TETA ligand is disordered around a twofold rotation axis.
doi:10.1107/S1600536811033381
PMCID: PMC3200897  PMID: 22058875
14.  Bis(μ-N,N′,N′′-tri-3-pyridylpyridine-1,3,5-tricarboxamide-κ2 N:N′)bis­[di­chloridomercury(II)] methanol disolvate 
The title dinuclear centrosymmetric complex, [Hg2Cl4(C24H18N6O3)2]·2CH3OH, comprises HgII atoms coordinated by two Cl atoms and two N atoms from ligands in a distorted tetra­hedral geometry. The solvent mol­ecules are linked by hydrogen bonds.
doi:10.1107/S160053681102040X
PMCID: PMC3151944  PMID: 21836858
15.  Nkx6.2 synergizes with Cdx-2 in stimulating proglucagon gene expression 
World Journal of Diabetes  2011;2(5):66-74.
AIM: To investigate whether the transactivator of the proglucagon gene (Gcg), Cdx-2, synergizes with other transcription factors in stimulating Gcg expression and the trans-differentiation of Gcg-expressing cells.
METHODS: We conducted affinity chromatography to identify proteins that interact with Cdx-2, using GST-tagged Cdx-2 against cell lysates from pancreatic InR1-G9 and intestinal GLUTag cell lines. This was followed by a mass-spectrometry analysis. From a potential Cdx-2 interaction protein identified, we examined its expression in pancreatic and gut endocrine cells, confirmed its interaction with Cdx-2 by GST-pull down and determined its effect in provoking Gcg expression in cell lines that do not express endogenous Gcg.
RESULTS: We identified 18 potential Cdx-2 interacting proteins. One of them is Nkx6.2. This homeodomain (HD) protein is expressed in pancreatic α and intestinal endocrine L cells but not in insulin producing cell lines, including In111. Nkx6.2, but not Nkx6.1, was shown to interact with Cdx-2, detected by GST-pull down. Furthermore, Nkx6.2 was found to synergize with Cdx-2 in provoking Gcg expression when they were ectopically expressed in the In111 cell line. Finally, when Cdx-2 and Nkx6.2 were co-transfected into the undifferentiated rat intestinal IEC-6 cell line, it produced detectable amount of Gcg mRNA.
CONCLUSION: Cdx-2 recruits Nkx6.2 in exerting its effect in stimulating Gcg expression. Our observations further support the notion that multiple HD proteins, including Cdx-2 and Nkx6.2, are involved in the regulation of Gcg expression and the genesis of Gcg-producing cells.
doi:10.4239/wjd.v2.i5.66
PMCID: PMC3116010  PMID: 21691557
Cdx-2; Nkx6.2; Homeodomain; Proglucagon; Affinity chromatograph
16.  Involvement of Leptin Receptor Long Isoform (LepRb)-STAT3 Signaling Pathway in Brain Fat Mass– and Obesity-Associated (FTO) Downregulation during Energy Restriction 
Molecular Medicine  2011;17(5-6):523-532.
Obesity is an important risk factor for cardiovascular disease, diabetes and certain cancers. The fat mass– and obesity-associated (FTO) gene is tightly associated with the pathophysiology of obesity, whereas the exact role of FTO remains poorly understood. Here, we investigated the alternations of FTO mRNA and protein expression in the peripheral metabolic tissues and the brain upon energy restriction (ER) and explored the involvement of the leptin signaling pathway in FTO regulation under ER status. ER decreased the FTO mRNA and protein expression in hypothalamus and brainstem but not in periphery. Using double-immunofluorescence staining, FTO was found to be colocalized with the leptin receptor long isoform (LepRb) in arcuate nucleus of hypothalamus and the nucleus of the solitary tract. In LepRb mutant db/db mice, the FTO downregulation in brain and body weight reduction induced by ER were completely abolished. The enhanced phosphorylation of signal transducer and activator of transcription 3 (STAT3) induced by ER was also impaired in db/db mice. Moreover, leptin directly activated the STAT3 signaling pathway and downregulated FTO in in vitro arcuate nucleus of hypothalamus cultures and in vivo wild-type mice but not db/db mice. Thus, our results provide the first evidence that the LepRb-STAT3 signaling pathway is involved in the brain FTO downregulation during ER.
doi:10.2119/molmed.2010.00134
PMCID: PMC3105135  PMID: 21267512
17.  Study on the visible-light-induced photokilling effect of nitrogen-doped TiO2 nanoparticles on cancer cells 
Nanoscale Research Letters  2011;6(1):356.
Nitrogen-doped TiO2 (N-TiO2) nanoparticles were prepared by calcining the anatase TiO2 nanoparticles under ammonia atmosphere. The N-TiO2 showed higher absorbance in the visible region than the pure TiO2. The cytotoxicity and visible-light-induced phototoxicity of the pure- and N-TiO2 were examined for three types of cancer cell lines. No significant cytotoxicity was detected. However, the visible-light-induced photokilling effects on cells were observed. The survival fraction of the cells decreased with the increased incubation concentration of the nanoparticles. The cancer cells incubated with N-TiO2 were killed more effectively than that with the pure TiO2. The reactive oxygen species was found to play an important role on the photokilling effect for cells. Furthermore, the intracellular distributions of N-TiO2 nanoparticles were examined by laser scanning confocal microscopy. The co-localization of N-TiO2 nanoparticles with nuclei or Golgi complexes was observed. The aberrant nuclear morphologies such as micronuclei were detected after the N-TiO2-treated cells were irradiated by the visible light.
doi:10.1186/1556-276X-6-356
PMCID: PMC3211446  PMID: 21711880
18.  RAPD and Internal Transcribed Spacer Sequence Analyses Reveal Zea nicaraguensis as a Section Luxuriantes Species Close to Zea luxurians 
PLoS ONE  2011;6(4):e16728.
Genetic relationship of a newly discovered teosinte from Nicaragua, Zea nicaraguensis with waterlogging tolerance, was determined based on randomly amplified polymorphic DNA (RAPD) markers and the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA using 14 accessions from Zea species. RAPD analysis showed that a total of 5,303 fragments were produced by 136 random decamer primers, of which 84.86% bands were polymorphic. RAPD-based UPGMA analysis demonstrated that the genus Zea can be divided into section Luxuriantes including Zea diploperennis, Zea luxurians, Zea perennis and Zea nicaraguensis, and section Zea including Zea mays ssp. mexicana, Zea mays ssp. parviglumis, Zea mays ssp. huehuetenangensis and Zea mays ssp. mays. ITS sequence analysis showed the lengths of the entire ITS region of the 14 taxa in Zea varied from 597 to 605 bp. The average GC content was 67.8%. In addition to the insertion/deletions, 78 variable sites were recorded in the total ITS region with 47 in ITS1, 5 in 5.8S, and 26 in ITS2. Sequences of these taxa were analyzed with neighbor-joining (NJ) and maximum parsimony (MP) methods to construct the phylogenetic trees, selecting Tripsacum dactyloides L. as the outgroup. The phylogenetic relationships of Zea species inferred from the ITS sequences are highly concordant with the RAPD evidence that resolved two major subgenus clades. Both RAPD and ITS sequence analyses indicate that Zea nicaraguensis is more closely related to Zea luxurians than the other teosintes and cultivated maize, which should be regarded as a section Luxuriantes species.
doi:10.1371/journal.pone.0016728
PMCID: PMC3078115  PMID: 21525982
19.  D-Cbl Binding to Drk Leads to Dose-Dependent Down-Regulation of EGFR Signaling and Increases Receptor-Ligand Endocytosis 
PLoS ONE  2011;6(2):e17097.
Proper control of Epidermal Growth Factor Receptor (EGFR) signaling is critical for normal development and regulated cell behaviors. Abnormal EGFR signaling is associated with tumorigenic process of various cancers. Complicated feedback networks control EGFR signaling through ligand production, and internalization-mediated destruction of ligand-receptor complexes. Previously, we found that two isoforms of D-Cbl, D-CblS and D-CblL, regulate EGFR signaling through distinct mechanisms. While D-CblL plays a crucial role in dose-dependent down-regulation of EGFR signaling, D-CblS acts in normal restriction of EGFR signaling and does not display dosage effect. Here, we determined the underlying molecular mechanism, and found that Drk facilitates the dose-dependent regulation of EGFR signaling through binding to the proline-rich motif of D-CblL, PR. Furthermore, the RING finger domain of D-CblL is essential for promoting endocytosis of the ligand-receptor complex. Interestingly, a fusion protein of the two essential domains of D-CblL, RING- PR, is sufficient to down-regulate EGFR signal in a dose-dependent manner by promoting internalization of the ligand, Gurken. Besides, RING-SH2Drk, a fusion protein of the RING finger domain of D-Cbl and the SH2 domain of Drk, also effectively down-regulates EGFR signaling in Drosophila follicle cells, and suppresses the effects of constitutively activated EGFR. The RING-SH2Drk suppresses EGFR signaling by promoting the endosomal trafficking of ligand-receptor complexes, suggesting that Drk plays a negative role in EGFR signaling by enhancing receptor endocytosis through cooperating with the RING domain of D-Cbl. Interfering the recruitment of signal transducer, Drk, to the receptor by the RING-SH2Drk might further reduces EGFR signaling. The fusion proteins we developed may provide alternative strategies for therapy of cancers caused by hyper-activation of EGFR signaling.
doi:10.1371/journal.pone.0017097
PMCID: PMC3038869  PMID: 21340027

Results 1-20 (20)