PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Genomic and functional analysis identifies CRKL as an oncogene amplified in lung cancer 
Oncogene  2009;29(10):1421-1430.
DNA amplifications, leading to the overexpression of oncogenes, are a cardinal feature of lung cancer and directly contribute to its pathogenesis. To uncover novel such alterations, we performed an array-based comparative genomic hybridization survey of 128 non-small cell lung cancer cell lines and tumors. Prominent among our findings, we identified recurrent high-level amplification at cytoband 22q11.21 in 3% of lung cancer specimens, with another 11% of specimens exhibiting low-level gain spanning that locus. The 22q11.21 amplicon core contained eight named genes, only four of which were overexpressed (by transcript profiling) when amplified. Among these, CRKL encodes an adaptor protein functioning in signal transduction, best known as a substrate of the BCR-ABL kinase in chronic myelogenous leukemia. RNA interference-mediated knockdown of CRKL in lung cancer cell lines with (but not without) amplification led to significantly decreased cell proliferation, cell-cycle progression, cell survival, and cell motility and invasion. In addition, overexpression of CRKL in immortalized human bronchial epithelial cells led to EGF-independent cell growth. Our findings indicate that amplification and resultant overexpression of CRKL contributes to diverse oncogenic phenotypes in lung cancer, with implications for targeted therapy, and highlighting a role of adapter proteins as primary genetic drivers of tumorigenesis.
doi:10.1038/onc.2009.437
PMCID: PMC3320568  PMID: 19966867
CRKL; lung cancer; DNA amplification; genomic profiling; adapter protein
2.  Molecular Profiling of Breast Cancer Cell Lines Defines Relevant Tumor Models and Provides a Resource for Cancer Gene Discovery 
PLoS ONE  2009;4(7):e6146.
Background
Breast cancer cell lines have been used widely to investigate breast cancer pathobiology and new therapies. Breast cancer is a molecularly heterogeneous disease, and it is important to understand how well and which cell lines best model that diversity. In particular, microarray studies have identified molecular subtypes–luminal A, luminal B, ERBB2-associated, basal-like and normal-like–with characteristic gene-expression patterns and underlying DNA copy number alterations (CNAs). Here, we studied a collection of breast cancer cell lines to catalog molecular profiles and to assess their relation to breast cancer subtypes.
Methods
Whole-genome DNA microarrays were used to profile gene expression and CNAs in a collection of 52 widely-used breast cancer cell lines, and comparisons were made to existing profiles of primary breast tumors. Hierarchical clustering was used to identify gene-expression subtypes, and Gene Set Enrichment Analysis (GSEA) to discover biological features of those subtypes. Genomic and transcriptional profiles were integrated to discover within high-amplitude CNAs candidate cancer genes with coordinately altered gene copy number and expression.
Findings
Transcriptional profiling of breast cancer cell lines identified one luminal and two basal-like (A and B) subtypes. Luminal lines displayed an estrogen receptor (ER) signature and resembled luminal-A/B tumors, basal-A lines were associated with ETS-pathway and BRCA1 signatures and resembled basal-like tumors, and basal-B lines displayed mesenchymal and stem/progenitor-cell characteristics. Compared to tumors, cell lines exhibited similar patterns of CNA, but an overall higher complexity of CNA (genetically simple luminal-A tumors were not represented), and only partial conservation of subtype-specific CNAs. We identified 80 high-level DNA amplifications and 13 multi-copy deletions, and the resident genes with concomitantly altered gene-expression, highlighting known and novel candidate breast cancer genes.
Conclusions
Overall, breast cancer cell lines were genetically more complex than tumors, but retained expression patterns with relevance to the luminal-basal subtype distinction. The compendium of molecular profiles defines cell lines suitable for investigations of subtype-specific pathobiology, cancer stem cell biology, biomarkers and therapies, and provides a resource for discovery of new breast cancer genes.
doi:10.1371/journal.pone.0006146
PMCID: PMC2702084  PMID: 19582160
3.  Genomic Profiling Identifies GATA6 as a Candidate Oncogene Amplified in Pancreatobiliary Cancer 
PLoS Genetics  2008;4(5):e1000081.
Pancreatobiliary cancers have among the highest mortality rates of any cancer type. Discovering the full spectrum of molecular genetic alterations may suggest new avenues for therapy. To catalogue genomic alterations, we carried out array-based genomic profiling of 31 exocrine pancreatic cancers and 6 distal bile duct cancers, expanded as xenografts to enrich the tumor cell fraction. We identified numerous focal DNA amplifications and deletions, including in 19% of pancreatobiliary cases gain at cytoband 18q11.2, a locus uncommonly amplified in other tumor types. The smallest shared amplification at 18q11.2 included GATA6, a transcriptional regulator previously linked to normal pancreas development. When amplified, GATA6 was overexpressed at both the mRNA and protein levels, and strong immunostaining was observed in 25 of 54 (46%) primary pancreatic cancers compared to 0 of 33 normal pancreas specimens surveyed. GATA6 expression in xenografts was associated with specific microarray gene-expression patterns, enriched for GATA binding sites and mitochondrial oxidative phosphorylation activity. siRNA mediated knockdown of GATA6 in pancreatic cancer cell lines with amplification led to reduced cell proliferation, cell cycle progression, and colony formation. Our findings indicate that GATA6 amplification and overexpression contribute to the oncogenic phenotypes of pancreatic cancer cells, and identify GATA6 as a candidate lineage-specific oncogene in pancreatobiliary cancer, with implications for novel treatment strategies.
Author Summary
Pancreatic cancer is a devastating disease, having among the lowest survival rates of any cancer. A better understanding of the molecular basis of pancreatic cancer may lead to improved rationale therapies. We report here the discovery of amplification (i.e. extra copies) of the GATA6 gene in many human pancreatic cancers. GATA6 is a regulator of gene expression and functions in the development of the normal pancreas. Our findings indicate that its amplification and aberrant overexpression contribute to pancreatic cancer development. GATA6 joins a growing list of cancer genes with key roles in normal human development but pathogenic roles in cancer when aberrantly expressed. Our discovery of GATA6 amplification provides a new foothold into understanding the pathogenic mechanisms underlying pancreatic cancer, and suggests new strategies for therapy by targeting GATA6 or the genes it regulates.
doi:10.1371/journal.pgen.1000081
PMCID: PMC2413204  PMID: 18535672
4.  Array-Based Comparative Genomic Hybridization Identifies Localized DNA Amplifications and Homozygous Deletions in Pancreatic Cancer1* 
Neoplasia (New York, N.Y.)  2005;7(6):556-562.
Abstract
Pancreatic cancer, the fourth leading cause of cancer death in the United States, is frequently associated with the amplification and deletion of specific oncogenes and tumor-suppressor genes (TSGs), respectively. To identify such novel alterations and to discover the underlying genes, we performed comparative genomic hybridization on a set of 22 human pancreatic cancer cell lines, using cDNA microarrays measuring ∼26,000 human genes (thereby providing an average mapping resolution of <60 kb). To define the subset of amplified and deleted genes with correspondingly altered expression, we also profiled mRNA levels in parallel using the same cDNA microarray platform. In total, we identified 14 high-level amplifications (38–4934 kb in size) and 15 homozygous deletions (46–725 kb). We discovered novel localized amplicons, suggesting previously unrecognized candidate oncogenes at 6p21, 7q21 (SMURF1, TRRAP), 11q22 (BIRC2, BIRC3), 12p12, 14q24 (TGFB3), 17q12, and 19q13. Likewise, we identified novel polymerase chain reaction-validated homozygous deletions indicating new candidate TSGs at 6q25, 8p23, 8p22 (TUSC3), 9q33 (TNC, TNFSF15), 10q22, 10q24 (CHUK), 11p15 (DKK3), 16q23, 18q23, 21q22 (PRDM15, ANKRD3), and Xp11. Our findings suggest candidate genes and pathways, which may contribute to the development or progression of pancreatic cancer.
PMCID: PMC1501288  PMID: 16036106
Pancreatic cancer; array CGH; comparative genomic hybridization; expression profiling; DNA amplification

Results 1-4 (4)