Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)
more »
Year of Publication
Document Types
1.  A 13-gene signature prognostic of HPV-negative OSCC: discovery and external validation 
To identify a prognostic gene signature for HPV-negative OSCC patients.
Experimental Design
Two gene expression datasets were used; a training dataset from the Fred Hutchinson Cancer Research Center (FHCRC) (n=97), and a validation dataset from the MD Anderson Cancer Center (MDACC) (n=71). We applied L1/L2-penalized Cox regression models to the FHCRC data on the 131–gene signature previously identified to be prognostic in OSCC patients to identify a prognostic model specific for high-risk HPV-negative OSCC patients. The models were tested with the MDACC dataset using a receiver operating characteristic analysis.
A 13-gene model was identified as the best predictor of HPV-negative OSCC-specific survival in the training dataset. The risk score for each patient in the validation dataset was calculated from this model and dichotomized at the median. The estimated 2-year mortality (± SE) of patients with high risk scores was 47.1 (±9.24)% compared with 6.35 (± 4.42)% for patients with low risk scores. ROC analyses showed that the areas under the curve for the age, gender, and treatment modality-adjusted models with risk score (0.78, 95%CI: 0.74-0.86) and risk score plus tumor stage (0.79, 95%CI: 0.75-0.87) were substantially higher than for the model with tumor stage (0.54, 95%CI: 0.48-0.62).
We identified and validated a 13-gene signature that is considerably better than tumor stage in predicting survival of HPV-negative OSCC patients. Further evaluation of this gene signature as a prognostic marker in other populations of patients with HPV-negative OSCC is warranted.
PMCID: PMC3593802  PMID: 23319825
gene signature; prognosis; HPV-negative; OSCC
2.  Integrative Genomics in Combination with RNA Interference Identifies Prognostic and Functionally Relevant Gene Targets for Oral Squamous Cell Carcinoma 
PLoS Genetics  2013;9(1):e1003169.
In oral squamous cell carcinoma (OSCC), metastasis to lymph nodes is associated with a 50% reduction in 5-year survival. To identify a metastatic gene set based on DNA copy number abnormalities (CNAs) of differentially expressed genes, we compared DNA and RNA of OSCC cells laser-microdissected from non-metastatic primary tumors (n = 17) with those from lymph node metastases (n = 20), using Affymetrix 250K Nsp single-nucleotide polymorphism (SNP) arrays and U133 Plus 2.0 arrays, respectively. With a false discovery rate (FDR)<5%, 1988 transcripts were found to be differentially expressed between primary and metastatic OSCC. Of these, 114 were found to have a significant correlation between DNA copy number and gene expression (FDR<0.01). Among these 114 correlated transcripts, the corresponding genomic regions of each of 95 transcripts had CNAs differences between primary and metastatic OSCC (FDR<0.01). Using an independent dataset of 133 patients, multivariable analysis showed that the OSCC–specific and overall mortality hazards ratio (HR) for patients carrying the 95-transcript signature were 4.75 (95% CI: 2.03–11.11) and 3.45 (95% CI: 1.84–6.50), respectively. To determine the degree by which these genes impact cell survival, we compared the growth of five OSCC cell lines before and after knockdown of over-amplified transcripts via a high-throughput siRNA–mediated screen. The expression-knockdown of 18 of the 26 genes tested showed a growth suppression ≥30% in at least one cell line (P<0.01). In particular, cell lines derived from late-stage OSCC were more sensitive to the knockdown of G3BP1 than cell lines derived from early-stage OSCC, and the growth suppression was likely caused by increase in apoptosis. Further investigation is warranted to examine the biological role of these genes in OSCC progression and their therapeutic potentials.
Author Summary
Neck lymph node metastasis is the most important prognostic factor in oral squamous cell carcinoma (OSCC). To identify genes associated with this critical step of OSCC progression, we compared DNA copy number aberrations and gene expression differences between tumor cells found in metastatic lymph nodes versus those in non-metastatic primary tumors. We identified 95 transcripts (87 genes) with metastasis-specific genome abnormalities and gene expression. Tested in an independent cohort of 133 OSCC patients, the 95 gene signature was an independent risk factor of disease-specific and overall death, suggesting a disease progression phenotype. We knocked down the expression of over-amplified genes in five OSCC cell lines. Knockdown of 18 of the 26 tested genes suppressed the cell growth in at least one cell line. Interestingly, cell lines derived from late-stage OSCC were more sensitive to the knockdown of G3BP1 than cell lines derived from early-stage OSCC. The knockdown of G3BP1 increased programmed cell death in the p53-mutant but not wild-type OSCC cell lines. Taken together, we demonstrate that CNA–associated transcripts differentially expressed in carcinoma cells with an aggressive phenotype (i.e., metastatic to lymph nodes) can be biomarkers with both prognostic information and functional relevance. Moreover, results suggest that G3BP1 is a potential therapeutic target against late-stage p53-negative OSCC.
PMCID: PMC3547824  PMID: 23341773
3.  Gene Expression in Uninvolved Oral Mucosa of OSCC Patients Facilitates Identification of Markers Predictive of OSCC Outcomes 
PLoS ONE  2012;7(9):e46575.
Oral and oropharyngeal squamous cell carcinomas (OSCC) are among the most common cancers worldwide, with approximately 60% 5-yr survival rate. To identify potential markers for disease progression, we used Affymetrix U133 plus 2.0 arrays to examine the gene expression profiles of 167 primary tumor samples from OSCC patients, 58 uninvolved oral mucosae from OSCC patients and 45 normal oral mucosae from patients without oral cancer, all enrolled at one of the three University of Washington-affiliated medical centers between 2003 to 2008. We found 2,596 probe sets differentially expressed between 167 tumor samples and 45 normal samples. Among 2,596 probe sets, 71 were significantly and consistently up- or down-regulated in the comparison between normal samples and uninvolved oral samples and between uninvolved oral samples and tumor samples. Cox regression analyses showed that 20 of the 71 probe sets were significantly associated with progression-free survival. The risk score for each patient was calculated from coefficients of a Cox model incorporating these 20 probe sets. The hazard ratio (HR) associated with each unit change in the risk score adjusting for age, gender, tumor stage, and high-risk HPV status was 2.7 (95% CI: 2.0–3.8, p = 8.8E-10). The risk scores in an independent dataset of 74 OSCC patients from the MD Anderson Cancer Center was also significantly associated with progression-free survival independent of age, gender, and tumor stage (HR 1.6, 95% CI: 1.1–2.2, p = 0.008). Gene Set Enrichment Analysis showed that the most prominent biological pathway represented by the 71 probe sets was the Integrin cell surface interactions pathway. In conclusion, we identified 71 probe sets in which dysregulation occurred in both uninvolved oral mucosal and cancer samples. Dysregulation of 20 of the 71 probe sets was associated with progression-free survival and was validated in an independent dataset.
PMCID: PMC3460916  PMID: 23029552
4.  Integrative analysis of DNA copy number and gene expression in metastatic oral squamous cell carcinoma identifies genes associated with poor survival 
Molecular Cancer  2010;9:143.
Lymphotropism in oral squamous cell carcinoma (OSCC) is one of the most important prognostic factors of 5-year survival. In an effort to identify genes that may be responsible for the initiation of OSCC lymphotropism, we examined DNA copy number gains and losses and corresponding gene expression changes from tumor cells in metastatic lymph nodes of patients with OSCC.
We performed integrative analysis of DNA copy number alterations (CNA) and corresponding mRNA expression from OSCC cells isolated from metastatic lymph nodes of 20 patients using Affymetrix 250 K Nsp I SNP and U133 Plus 2.0 arrays, respectively. Overall, genome CNA accounted for expression changes in 31% of the transcripts studied. Genome region 11q13.2-11q13.3 shows the highest correlation between DNA CNA and expression. With a false discovery rate < 1%, 530 transcripts (461 genes) demonstrated a correlation between CNA and expression. Among these, we found two subsets that were significantly associated with OSCC (n = 122) when compared to controls, and with survival (n = 27), as tested using an independent dataset with genome-wide expression profiles for 148 primary OSCC and 45 normal oral mucosa. We fit Cox models to calculate a principal component analysis-derived risk-score for these two gene sets ('122-' or '27-transcript PC'). The models combining the 122- or 27-transcript PC with stage outperformed the model using stage alone in terms of the Area Under the Curve (AUC = 0.82 or 0.86 vs. 0.72, with p = 0.044 or 0.011, respectively).
Genes exhibiting CNA-correlated expression may have biological impact on carcinogenesis and cancer progression in OSCC. Determination of copy number-associated transcripts associated with clinical outcomes in tumor cells with an aggressive phenotype (i.e., cells metastasized to the lymph nodes) can help prioritize candidate transcripts from high-throughput data for further studies.
PMCID: PMC2893102  PMID: 20537188

Results 1-4 (4)