Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)
Year of Publication
Document Types
author:("Wang, danxi")
1.  Polymorphisms affecting gene transcription and mRNA processing in pharmacogenetic candidate genes: detection through allelic expression imbalance in human target tissues 
Pharmacogenetics and genomics  2008;18(9):781-791.
Genetic variation in mRNA expression plays a critical role in human phenotypic diversity, but it has proven difficult to detect regulatory polymorphisms - mostly single nucleotide polymorphisms (rSNPs). Additionally, variants in the transcribed region, termed here ‘structural RNA SNPs’ (srSNPs), can affect mRNA processing and turnover. Both rSNPs and srSNPs cause allelic mRNA expression imbalance (AEI) in heterozygous individuals. We have applied a rapid and accurate AEI methodology for testing 42 genes implicated in human diseases and drug response, specifically cardiovascular and CNS diseases, and affecting drug metabolism and transport. Each gene was analyzed in physiologically relevant human autopsy tissues, including brain, heart, liver, intestines, and lymphocytes. Substantial AEI was observed in ∼55% of the surveyed genes. Focusing on cardiovascular candidate genes in human hearts, AEI analysis revealed frequent cis-acting regulatory factors in SOD2 and ACE mRNA expression, having potential clinical significance. SNP scanning to locate regulatory polymorphisms in a number of genes failed to support several previously proposed promoter SNPs discovered with use of reporter gene assays in heterologous tissues, while srSNPs appear more frequent than expected. Computational analysis of mRNA folding indicates that ∼90% of srSNPs affects mRNA folding, and hence potentially function. Our results indicate that both rSNPs and srSNPs represent a still largely untapped reservoir of variants that contribute to human phenotypic diversity.
PMCID: PMC2779843  PMID: 18698231
2.  Highly variable mRNA expression and splicing of L-type voltage-dependent calcium channel alpha subunit 1C in human heart tissues 
Pharmacogenetics and genomics  2006;16(10):735-745.
The voltage-dependent L-type calcium channel α-subunit 1c (Cav1.2, CACNA1C) undergoes extensive mRNA splicing, leading to numerous isoforms with different functions. L-type calcium channel blockers are used in the treatment of hypertension and arrhythmias, but response varies between individuals. We have studied the interindividual variability in mRNA expression and splicing of CACNA1C, in 65 heart tissue samples, taken from heart transplant recipients.
Splice variants were measured quantitatively by polymerase chain reaction in 12 splicing loci of CACNA1C mRNA. To search for functional cis-acting polymorphisms, we determined allelic expression ratios for total CACNA1C mRNA and several splice variants using marker single nucleotide polymorphisms in exon 4 and exon 30.
Total CACNA1C mRNA levels varied ∼50-fold. Substantial splicing occurred in six loci generating two or more splice variants, some with known functional differences. Splice patterns varied broadly between individuals. Two heart tissues expressed predominantly the dihydropyridine-sensitive smooth muscle isoform of CACNA1C (containing exon 8), rather than the cardiac isoform (containing exon 8a). Lack of significant allelic expression imbalance, observed with total mRNA and several splice variants, argued against CACNA1C polymorphisms as a cause of variability. Taken together, highly variable splicing can cause profound phenotypic variations of CACNA1C function, potentially associated with disease susceptibility and response to L-type calcium channel blockers.
PMCID: PMC2688811  PMID: 17001293
cis-acting polymorphism; L-type calcium channel α-subunit 1c; mRNA splicing
3.  Searching for polymorphisms that affect gene expression and mRNA processing: Example ABCB1 (MDR1) 
The AAPS Journal  2006;8(3):E515-E520.
Cis-acting genetic variations can affect the amount and structure of mRNA/protein. Genomic surveys indicate that polymorphisms affecting transcription and mRNA processing, including splicing and turnover, may account for main share of genetic factors in human phenotypic variability; however, most of these polymorphisms remain yet to be discovered. We use allelic expression imbalance (AEI) as a quantitative phenotype in the search for functionalcis-acting polymorphisms in many genes includingABCB1 (multidrug resistance 1 gene, MDR1, Pgp). Previous studies have shown that ABCB1 activity correlates with a synonymous polymorphism. C3435T; however, the functional polymorphism and molecular mechanisms underlying this clinical association remained unknown. Analysis of allele-specific expression in liver autopsy samples and in vitro expression experiments showed that C3435T represents a main functional polymorphism, accounting for 1.5-to 2-fold changes in mRNA levels. The mechanism appears to involve increased mRNA turnover, probably as a result of different folding structures calculated for mRNA with the Mfold program. Other examples of the successful application of AEI analysis for studying functional polymorphism include5-HTT (serotonin transporter, SLC6A4) andOPRM1 (μ opioid receptor). AEI is therefore a powerful approach for detectingcis-acting polymorphisms affecting gene expression and mRNA processing.
PMCID: PMC2761059  PMID: 17025270
ABCB1; allele-specific expression; mRNA stability; cis-acting polymorphism

Results 1-3 (3)