PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-1 (1)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  THE CRYSTAL STRUCTURE OF IRON-FREE HUMAN SERUM TRANSFERRIN PROVIDES INSIGHT INTO INTER-LOBE COMMUNICATION AND RECEPTOR BINDING* 
The Journal of biological chemistry  2006;281(34):24934-24944.
Serum transferrin reversibly binds iron in each of two lobes and delivers it to cells by a receptor-mediated, pH-dependant process. The binding and release of iron results in a large conformational change in which two subdomains in each lobe close or open with a rigid twisting motion around a hinge. We report the structure of human serum transferrin (hTF) lacking iron (apo-hTF) which was independently determined by two methods: (1) the crystal structure of recombinant non-glycosylated apo-hTF was solved at 2.7 Å resolution using a MAD phasing strategy, by substituting the nine methionines in hTF with selenomethionine and (2) the structure of glycosylated apo-hTF (isolated from serum) was determined to a resolution of 2.7 Å by molecular replacement using the human apo-N-lobe and the rabbit holo-C1-subdomain as search models. These two crystal structures are essentially identical. They represent the first published model for full-length human TF and reveal that, in contrast to family members (human lactoferrin and hen ovotransferrin), both lobes are almost equally open: 59.4° and 49.5° rotations are required to open the N- and C-lobe, respectively, (compared to closed pig TF). Availability of this structure is critical to a complete understanding of the metal binding properties of each lobe of hTF; the apo-hTF structure suggests that differences in the hinge regions of the N- and C-lobes may influence the rates of iron binding and release. In addition, we evaluate potential interactions between apo-hTF and the human transferrin receptor.
doi:10.1074/jbc.M604592200
PMCID: PMC1895924  PMID: 16793765

Results 1-1 (1)