PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Effect of acute physiological hyperinsulinemia on gene expression in human skeletal muscle in vivo 
This study was undertaken to test the hypothesis that short-term exposure (4 h) to physiological hyperinsulinemia in normal, healthy subjects without a family history of diabetes would induce a low grade inflammatory response independently of glycemic status. Twelve normal glucose tolerant subjects received a 4-h euglycemic hyperinsulinemic clamp with biopsies of the vastus lateralis muscle. Microarray analysis identified 121 probe sets that were significantly altered in response to physiological hyperinsulinemia while maintaining euglycemia. In normal, healthy human subjects insulin increased the mRNAs of a number of inflammatory genes (CCL2, CXCL2 and THBD) and transcription factors (ATF3, BHLHB2, HES1, KLF10, JUNB, FOS, and FOSB). A number of other genes were upregulated in response to insulin, including RRAD, MT, and SGK. CITED2, a known coactivator of PPARα, was significantly downregulated. SGK and CITED2 are located at chromosome 6q23, where we previously detected strong linkage to fasting plasma insulin concentrations. We independently validated the mRNA expression changes in an additional five subjects and closely paralleled the results observed in the original 12 subjects. A saline infusion in healthy, normal glucose-tolerant subjects without family history of diabetes demonstrated that the genes altered during the euglycemic hyperinsulinemic clamp were due to hyperinsulinemia and were unrelated to the biopsy procedure per se. The results of the present study demonstrate that insulin acutely regulates the levels of mRNAs involved in inflammation and transcription and identifies several candidate genes, including HES1 and BHLHB2, for further investigation.
doi:10.1152/ajpendo.00607.2007
PMCID: PMC3581328  PMID: 18334611
gene expression; muscle; insulin action; euglycemic hyperinsulinemic clamp; inflammation
2.  Coordinated Defects in Hepatic Long Chain Fatty Acid Metabolism and Triglyceride Accumulation Contribute to Insulin Resistance in Non-Human Primates 
PLoS ONE  2011;6(11):e27617.
Non-Alcoholic fatty liver disease (NAFLD) is characterized by accumulation of triglycerides (TG) in hepatocytes, which may also trigger cirrhosis. The mechanisms of NAFLD are not fully understood, but insulin resistance has been proposed as a key determinant.
Aims
To determine the TG content and long chain fatty acyl CoA composition profile in liver from obese non-diabetic insulin resistant (IR) and lean insulin sensitive (IS) baboons in relation with hepatic and peripheral insulin sensitivity.
Methods
Twenty baboons with varying grades of adiposity were studied. Hepatic (liver) and peripheral (mainly muscle) insulin sensitivity was measured with a euglycemic clamp and QUICKI. Liver biopsies were performed at baseline for TG content and LCFA profile by mass spectrometry, and histological analysis. Findings were correlated with clinical and biochemical markers of adiposity and insulin resistance.
Results
Obese IR baboons had elevated liver TG content compared to IS. Furthermore, the concentration of unsaturated (LC-UFA) was greater than saturated (LC-SFA) fatty acyl CoA in the liver. Interestingly, LC-FA UFA and SFA correlated with waist, BMI, insulin, NEFA, TG, QUICKI, but not M/I. Histological findings of NAFLD ranging from focal to diffuse hepatic steatosis were found in obese IR baboons.
Conclusion
Liver TG content is closely related with both hepatic and peripheral IR, whereas liver LC-UFA and LC-SFA are closely related only with hepatic IR in non-human primates. Mechanisms leading to the accumulation of TG, LC-UFA and an altered UFA: LC-SFA ratio may play an important role in the pathophysiology of fatty liver disease in humans.
doi:10.1371/journal.pone.0027617
PMCID: PMC3220682  PMID: 22125617
3.  Circulating Fibroblast Growth Factor-21 Is Elevated in Impaired Glucose Tolerance and Type 2 Diabetes and Correlates With Muscle and Hepatic Insulin Resistance 
Diabetes Care  2009;32(8):1542-1546.
OBJECTIVE
Fibroblast growth factor (FGF)-21 is highly expressed in the liver and regulates hepatic glucose production and lipid metabolism in rodents. However, its role in the pathogenesis of type 2 diabetes in humans remains to be defined. The aim of this study was to quantitate circulating plasma FGF-21 levels and examine their relationship with insulin sensitivity in subjects with varying degrees of obesity and glucose tolerance.
RESEARCH DESIGN AND METHODS
Forty-one subjects (8 lean with normal glucose tolerance [NGT], 9 obese with NGT, 12 with impaired fasting glucose [IFG]/impaired glucose tolerance [IGT], and 12 type 2 diabetic subjects) received an oral glucose tolerance test (OGTT) and a hyperinsulinemic-euglycemic clamp (80 mU/m2 per min) combined with 3-[3H] glucose infusion.
RESULTS
Subjects with type 2 diabetes, subjects with IGT, and obese subjects with NGT were insulin resistant compared with lean subjects with NGT. Plasma FGF-21 levels progressively increased from 3.9 ± 0.3 ng/ml in lean subjects with NGT to 4.9 ± 0.2 in obese subjects with NGT to 5.2 ± 0.2 in subjects with IGT and to 5.3 ± 0.2 in type 2 diabetic subjects. FGF-21 levels correlated inversely with whole-body (primarily reflects muscle) insulin sensitivity (r = −0.421, P = 0.007) and directly with the hepatic insulin resistance index (r = 0.344, P = 0.034). FGF-21 levels also correlated with measures of glycemia (fasting plasma glucose [r = 0.312, P = 0.05], 2-h plasma glucose [r = 0.414, P = 0.01], and A1C [r = 0.325, P = 0.04]).
CONCLUSIONS
Plasma FGF-21 levels are increased in insulin-resistant states and correlate with hepatic and whole-body (muscle) insulin resistance. FGF-21 may play a role in pathogenesis of hepatic and whole-body insulin resistance in type 2 diabetes.
doi:10.2337/dc09-0684
PMCID: PMC2713625  PMID: 19487637
4.  Proteomics Reveals Novel Oxidative and Glycolytic Mechanisms in Type 1 Diabetic Patients' Skin Which Are Normalized by Kidney-Pancreas Transplantation 
PLoS ONE  2010;5(3):e9923.
Background
In type 1 diabetes (T1D) vascular complications such as accelerated atherosclerosis and diffused macro-/microangiopathy are linked to chronic hyperglycemia with a mechanism that is not yet well understood. End-stage renal disease (ESRD) worsens most diabetic complications, particularly, the risk of morbidity and mortality from cardiovascular disease is increased several fold.
Methods and Findings
We evaluated protein regulation and expression in skin biopsies obtained from T1D patients with and without ESRD, to identify pathways of persistent cellular changes linked to diabetic vascular disease. We therefore examined pathways that may be normalized by restoration of normoglycemia with kidney-pancreas (KP) transplantation. Using proteomic and ultrastructural approaches, multiple alterations in the expression of proteins involved in oxidative stress (catalase, superoxide dismutase 1, Hsp27, Hsp60, ATP synthase δ chain, and flavin reductase), aerobic and anaerobic glycolysis (ACBP, pyruvate kinase muscle isozyme, and phosphoglycerate kinase 1), and intracellular signaling (stratifin-14-3-3, S100-calcyclin, cathepsin, and PPI rotamase) as well as endothelial vascular abnormalities were identified in T1D and T1D+ESRD patients. These abnormalities were reversed after KP transplant. Increased plasma levels of malondialdehyde were observed in T1D and T1D+ESRD patients, confirming increased oxidative stress which was normalized after KP transplant.
Conclusions
Our data suggests persistent cellular changes of anti-oxidative machinery and of aerobic/anaerobic glycolysis are present in T1D and T1D+ESRD patients, and these abnormalities may play a key role in the pathogenesis of hyperglycemia-related vascular complications. Restoration of normoglycemia and removal of uremia with KP transplant can correct these abnormalities. Some of these identified pathways may become potential therapeutic targets for a new generation of drugs.
doi:10.1371/journal.pone.0009923
PMCID: PMC2848014  PMID: 20360867

Results 1-4 (4)