Search tips
Search criteria

Results 1-25 (25)

Clipboard (0)
more »
Year of Publication
Document Types
1.  CystiSim – An Agent-Based Model for Taenia solium Transmission and Control 
PLoS Neglected Tropical Diseases  2016;10(12):e0005184.
Taenia solium taeniosis/cysticercosis was declared eradicable by the International Task Force for Disease Eradication in 1993, but remains a neglected zoonosis. To assist in the attempt to regionally eliminate this parasite, we developed cystiSim, an agent-based model for T. solium transmission and control. The model was developed in R and available as an R package ( cystiSim was adapted to an observed setting using field data from Tanzania, but adaptable to other settings if necessary. The model description adheres to the Overview, Design concepts, and Details (ODD) protocol and consists of two entities—pigs and humans. Pigs acquire cysticercosis through the environment or by direct contact with a tapeworm carrier's faeces. Humans acquire taeniosis from slaughtered pigs proportional to their infection intensity. The model allows for evaluation of three interventions measures or combinations hereof: treatment of humans, treatment of pigs, and pig vaccination, and allows for customary coverage and efficacy settings. cystiSim is the first agent-based transmission model for T. solium and suggests that control using a strategy consisting of an intervention only targeting the porcine host is possible, but that coverage and efficacy must be high if elimination is the ultimate goal. Good coverage of the intervention is important, but can be compensated for by including an additional intervention targeting the human host. cystiSim shows that the scenarios combining interventions in both hosts, mass drug administration to humans, and vaccination and treatment of pigs, have a high probability of success if coverage of 75% can be maintained over at least a four year period. In comparison with an existing mathematical model for T. solium transmission, cystiSim also includes parasite maturation, host immunity, and environmental contamination. Adding these biological parameters to the model resulted in new insights in the potential effect of intervention measures.
Author Summary
Taenia solium is the leading cause of preventable epilepsy and the highest ranking foodborne parasite in terms of disease burden worldwide. Currently there are no large scale control programmes implemented against T. solium, but efficacious intervention tools are there, making control programmes the next step forward. Because of the zoonotic properties of the parasite, existing in both humans and pigs, a combination of intervention tools is likely to be needed. cystiSim is an agent-based disease model that provides insight into which intervention tools, and the frequency of administration of these tools, are needed to yield an effect on disease prevalence. cystiSim is a valuable tool in designing future control programmes and will assist in the elimination of T. solium as a public health problem.
PMCID: PMC5161321  PMID: 27984581
2.  Rabies in Kazakhstan 
PLoS Neglected Tropical Diseases  2016;10(8):e0004889.
Rabies is a neglected zoonotic disease. There is a sparsity of data on this disease with regard to the incidence of human and animal disease in many low and middle income countries. Furthermore, rabies results in a large economic impact and a high human burden of disease. Kazakhstan is a large landlocked middle income country that gained independence from the Soviet Union in 1991 and is endemic for rabies.
Methodology/Principal Findings
We used detailed public health and veterinary surveillance data from 2003 to 2015 to map where livestock rabies is occurring. We also estimate the economic impact and human burden of rabies. Livestock and canine rabies occurred over most of Kazakhstan, but there were regional variations in disease distribution. There were a mean of 7.1 officially recorded human fatalities due to rabies per year resulting in approximately 457 Disability Adjusted Life Years (DALYs). A mean of 64,289 individuals per annum underwent post exposure prophylaxis (PEP) which may have resulted in an additional 1140 DALYs annually. PEP is preventing at least 118 cases of human rabies each year or possibly as many as 1184 at an estimated cost of $1193 or $119 per DALY averted respectively. The estimated economic impact of rabies in Kazakhstan is $20.9 million per annum, with nearly half of this cost being attributed to the cost of PEP and the loss of income whilst being treated. A further $5.4 million per annum was estimated to be the life time loss of income for fatal cases. Animal vaccination programmes and animal control programmes also contributed substantially to the economic losses. The direct costs due to rabies fatalities of agricultural animals was relatively low.
This study demonstrates that in Kazakhstan there is a substantial economic cost and health impact of rabies. These costs could be reduced by modifying the vaccination programme that is now practised. The study also fills some data gaps on the epidemiology and economic effects of rabies in respect to Kazakhstan.
Author Summary
Kazakhstan is a large central Asian country that was part of the Soviet Union until 1991. The country is endemic for rabies. This study shows that there are areas of Kazakhstan such as the north and south east of the country where outbreaks of animal rabies are concentrated. Cattle, dogs and foxes are the animals most frequently confirmed with rabies. A mean of 7.1 human deaths annually due to rabies occurred between 2009 and 2015 inclusive in Kazakhstan resulting in 457 disability adjusted life years. A mean of 64,801 people each year are recorded as suffering bite injuries from animals, mainly due to dogs. Children are at higher risk of being bitten. However, the widespread use of post exposure prophylaxis (PEP) prevents at least 118 and possibly up to 1184 fatalities per annum of people bitten by rabid animals. The economic costs of this disease are high: exceeding $20 million per annum. However, the widespread use of PEP is cost effective in reducing the burden of disease.
PMCID: PMC4972401  PMID: 27486744
3.  The Burden of Zoonoses in Kyrgyzstan: A Systematic Review 
PLoS Neglected Tropical Diseases  2016;10(7):e0004831.
Zoonotic disease (ZD) pose a serious threat to human health in low-income countries. In these countries the human burden of disease is often underestimated due to insufficient monitoring because of insufficient funding. Quantification of the impact of zoonoses helps in prioritizing healthcare needs. Kyrgyzstan is a poor, mountainous country with 48% of the population employed in agriculture and one third of the population living below the poverty line.
Methodology/Principal Findings
We have assessed the burden of zoonoses in Kyrgyzstan by conducting a systematic review. We have used the collected data to estimate the burden of ZDs and addressed the underestimation in officially reported disease incidence. The estimated incidences of the ZDs were used to calculate incidence-based Disability Adjusted Life Years (DALYs). This standardized health gap measure enhances comparability between injuries and diseases. The combined burden for alveolar echinococcosis, cystic echinococcosis, brucellosis, campylobacteriosis, congenital toxoplasmosis, non-typhoidal salmonellosis and rabies in Kyrgyzstan in 2013 was 35,209 DALYs [95% Uncertainty interval (UI):13,413–83,777]; 576 deaths [95% UI: 279–1,168] were attributed to these infections. We estimate a combined median incidence of ZDs of 141,583 cases [95% UI: 33,912–250,924] in 2013. The highest burden was caused by non-typhoidal Salmonella and Echinococcus multilocularis, respectively 14,792 DALYs [95% UI: 3,966–41,532] and 11,915 DALYs [95% UI: 4,705–27,114] per year.
The health impact of zoonoses in Kyrgyzstan is substantial, comparable to that of HIV. Community-based surveillance studies and hospital-based registration of all occurrences of zoonoses would increase the accuracy of the estimates.
Author Summary
Zoonoses are diseases transmitted from vertebrate animals to humans. They can cause a variety of symptoms ranging from mild gastrointestinal complaints to debilitating illness and even death. Especially in low-income countries where animals play an important role for many, the burden of these diseases can be substantial. However, there is often little attention for these diseases, thus they remain under-researched and underfunded. In this review, we present estimates of the burden of the most important zoonotic diseases in Kyrgyzstan for the reference year 2013. We estimated the burden by calculating the incidence-based disability adjusted life years (DALYs), allowing comparison between diseases and injuries. Disease frequency data is scarce and hospital-based incidence data often underestimates the true incidence of the disease. By addressing the underestimation in officially reported incidence using data from our systematic review, we estimated the true incidence of the most important zoonoses in Kyrgyzstan. We quantified the substantial impact these diseases have on the wellbeing of people in Kyrgyzstan in 2013. The results underline the need for more intensive monitoring and surveillance of zoonotic diseases.
PMCID: PMC4936671  PMID: 27387925
5.  World Health Organization Estimates of the Relative Contributions of Food to the Burden of Disease Due to Selected Foodborne Hazards: A Structured Expert Elicitation 
PLoS ONE  2016;11(1):e0145839.
The Foodborne Disease Burden Epidemiology Reference Group (FERG) was established in 2007 by the World Health Organization (WHO) to estimate the global burden of foodborne diseases (FBDs). This estimation is complicated because most of the hazards causing FBD are not transmitted solely by food; most have several potential exposure routes consisting of transmission from animals, by humans, and via environmental routes including water. This paper describes an expert elicitation study conducted by the FERG Source Attribution Task Force to estimate the relative contribution of food to the global burden of diseases commonly transmitted through the consumption of food.
Methods and Findings
We applied structured expert judgment using Cooke’s Classical Model to obtain estimates for 14 subregions for the relative contributions of different transmission pathways for eleven diarrheal diseases, seven other infectious diseases and one chemical (lead). Experts were identified through international networks followed by social network sampling. Final selection of experts was based on their experience including international working experience. Enrolled experts were scored on their ability to judge uncertainty accurately and informatively using a series of subject-matter specific ‘seed’ questions whose answers are unknown to the experts at the time they are interviewed. Trained facilitators elicited the 5th, and 50th and 95th percentile responses to seed questions through telephone interviews. Cooke’s Classical Model uses responses to the seed questions to weigh and aggregate expert responses. After this interview, the experts were asked to provide 5th, 50th, and 95th percentile estimates for the ‘target’ questions regarding disease transmission routes. A total of 72 experts were enrolled in the study. Ten panels were global, meaning that the experts should provide estimates for all 14 subregions, whereas the nine panels were subregional, with experts providing estimates for one or more subregions, depending on their experience in the region. The size of the 19 hazard-specific panels ranged from 6 to 15 persons with several experts serving on more than one panel. Pathogens with animal reservoirs (e.g. non-typhoidal Salmonella spp. and Toxoplasma gondii) were in general assessed by the experts to have a higher proportion of illnesses attributable to food than pathogens with mainly a human reservoir, where human-to-human transmission (e.g. Shigella spp. and Norovirus) or waterborne transmission (e.g. Salmonella Typhi and Vibrio cholerae) were judged to dominate. For many pathogens, the foodborne route was assessed relatively more important in developed subregions than in developing subregions. The main exposure routes for lead varied across subregions, with the foodborne route being assessed most important only in two subregions of the European region.
For the first time, we present worldwide estimates of the proportion of specific diseases attributable to food and other major transmission routes. These findings are essential for global burden of FBD estimates. While gaps exist, we believe the estimates presented here are the best current source of guidance to support decision makers when allocating resources for control and intervention, and for future research initiatives.
PMCID: PMC4718673  PMID: 26784029
6.  Methodological Framework for World Health Organization Estimates of the Global Burden of Foodborne Disease 
PLoS ONE  2015;10(12):e0142498.
The Foodborne Disease Burden Epidemiology Reference Group (FERG) was established in 2007 by the World Health Organization to estimate the global burden of foodborne diseases (FBDs). This paper describes the methodological framework developed by FERG's Computational Task Force to transform epidemiological information into FBD burden estimates.
Methods and Findings
The global and regional burden of 31 FBDs was quantified, along with limited estimates for 5 other FBDs, using Disability-Adjusted Life Years in a hazard- and incidence-based approach. To accomplish this task, the following workflow was defined: outline of disease models and collection of epidemiological data; design and completion of a database template; development of an imputation model; identification of disability weights; probabilistic burden assessment; and estimating the proportion of the disease burden by each hazard that is attributable to exposure by food (i.e., source attribution). All computations were performed in R and the different functions were compiled in the R package 'FERG'. Traceability and transparency were ensured by sharing results and methods in an interactive way with all FERG members throughout the process.
We developed a comprehensive framework for estimating the global burden of FBDs, in which methodological simplicity and transparency were key elements. All the tools developed have been made available and can be translated into a user-friendly national toolkit for studying and monitoring food safety at the local level.
PMCID: PMC4668830  PMID: 26633883
7.  World Health Organization Estimates of the Global and Regional Disease Burden of 22 Foodborne Bacterial, Protozoal, and Viral Diseases, 2010: A Data Synthesis 
PLoS Medicine  2015;12(12):e1001921.
Foodborne diseases are important worldwide, resulting in considerable morbidity and mortality. To our knowledge, we present the first global and regional estimates of the disease burden of the most important foodborne bacterial, protozoal, and viral diseases.
Methods and Findings
We synthesized data on the number of foodborne illnesses, sequelae, deaths, and Disability Adjusted Life Years (DALYs), for all diseases with sufficient data to support global and regional estimates, by age and region. The data sources included varied by pathogen and included systematic reviews, cohort studies, surveillance studies and other burden of disease assessments. We sought relevant data circa 2010, and included sources from 1990–2012. The number of studies per pathogen ranged from as few as 5 studies for bacterial intoxications through to 494 studies for diarrheal pathogens. To estimate mortality for Mycobacterium bovis infections and morbidity and mortality for invasive non-typhoidal Salmonella enterica infections, we excluded cases attributed to HIV infection. We excluded stillbirths in our estimates. We estimate that the 22 diseases included in our study resulted in two billion (95% uncertainty interval [UI] 1.5–2.9 billion) cases, over one million (95% UI 0.89–1.4 million) deaths, and 78.7 million (95% UI 65.0–97.7 million) DALYs in 2010. To estimate the burden due to contaminated food, we then applied proportions of infections that were estimated to be foodborne from a global expert elicitation. Waterborne transmission of disease was not included. We estimate that 29% (95% UI 23–36%) of cases caused by diseases in our study, or 582 million (95% UI 401–922 million), were transmitted by contaminated food, resulting in 25.2 million (95% UI 17.5–37.0 million) DALYs. Norovirus was the leading cause of foodborne illness causing 125 million (95% UI 70–251 million) cases, while Campylobacter spp. caused 96 million (95% UI 52–177 million) foodborne illnesses. Of all foodborne diseases, diarrheal and invasive infections due to non-typhoidal S. enterica infections resulted in the highest burden, causing 4.07 million (95% UI 2.49–6.27 million) DALYs. Regionally, DALYs per 100,000 population were highest in the African region followed by the South East Asian region. Considerable burden of foodborne disease is borne by children less than five years of age. Major limitations of our study include data gaps, particularly in middle- and high-mortality countries, and uncertainty around the proportion of diseases that were foodborne.
Foodborne diseases result in a large disease burden, particularly in children. Although it is known that diarrheal diseases are a major burden in children, we have demonstrated for the first time the importance of contaminated food as a cause. There is a need to focus food safety interventions on preventing foodborne diseases, particularly in low- and middle-income settings.
In this data synthesis, Martyn Kirk and colleagues estimate the global and regional disease burden of 22 foodborne bacterial, protozoal and viral diseases.
Editors' Summary
Foodborne diseases are responsible for a large burden of illness (morbidity) and death (mortality) in both resource-rich and resource-poor countries. More than 200 diseases can be transmitted to people through the ingestion of food contaminated with microorganisms (bacteria, viruses, and parasites) or with chemicals. Contamination of food can occur at any stage of food production—on farms where crops are grown and animals raised, in factories where food is processed, and during food storage and preparation in shops, restaurants and the home. Contamination can arise because of pollution of the water, soil or air or through poor food-handling practices such as failing to wash one’s hands before preparing food. Many foodborne diseases (for example, norovirus, Escherichia coli, and campylobacter infections) present with gastrointestinal symptoms—stomach cramps, diarrhea, and vomiting. However, some foodborne illnesses cause symptoms affecting other parts of the body and some have serious sequelae (abnormal bodily conditions or diseases arising from a pre-existing disease). For example, infection with some strains of E. coli can lead to kidney failure.
Why Was This Study Done?
Accurate regional and global estimates of the disease burden of foodborne illnesses are needed to guide governmental and international efforts to improve food safety. However, estimates of the number of cases of foodborne illness, sequelae, deaths, and disability adjusted life years (a DALY represents the disease-related loss of one year of full health because of premature death or disability; DALYs provide a measure of the burden of a disease) are only available for a few countries. Consequently, in 2007, the World Health Organization (WHO) established the Foodborne Disease Burden Epidemiology Reference Group (FERG) to estimate the global and regional burden of disease attributable to foodborne illnesses. Here, researchers involved in one of the constituent task forces of FERG—the Enteric Diseases Task Force—undertake a data synthesis (the combination of information from many different sources) to provide global and regional estimates of the disease burden of several important foodborne bacterial, protozoal (parasitic), and viral diseases.
What Did the Researchers Do and Find?
The researchers combined national estimates of foodborne diseases and data from systematic reviews (studies that identify all the research on a given topic using predefined criteria), national surveillance programs, and other sources to estimate the number of illnesses, sequelae, deaths and DALYs globally and regionally for 22 diseases with sufficient data to support such estimations. Together, these 17 bacterial infections, two viral infections, and three protozoal infections caused 2 billion cases of illness, more than 1 million deaths, and almost 80 million DALYs in 2010. Using information on the proportions of infections considered to be foodborne by expert panels, the researchers estimated that nearly a third of these cases of illness (582 million cases), resulting in 25 million DALYs, were transmitted by contaminated food. Notably, 38% of the cases of foodborne illness, 33% of deaths from these diseases, and 43% of the disease burden from contaminated food (11 million DALYs) occurred in children under 5 years old. The leading cause of foodborne illness was norovirus (125 million cases), closely followed by campylobacter (96 million); diarrheal and invasive infections caused by non-typhoidal Salmonella enterica infections caused the largest burden of disease (4.07 million DALYs). Finally, the burden of foodborne illness was highest in WHO’s African region.
What Do These Findings Mean?
The lack of reliable data on the 22 illnesses considered in this analysis for many regions of the world, including some of the most populous regions, and uncertainty about the proportion of the cases of each illness that is foodborne may limit the accuracy of these findings. Nevertheless, these results provide new information about the regional and global disease burden caused by foodborne illnesses. In particular, these estimates reveal an unexpectedly high disease burden caused by foodborne illnesses among young children. Thus, although children under the age of 5 years represent only 9% of the global population, nearly half of the disease burden from contaminated food may occur in this age group. Overall, the findings of this study suggest that governments and international agencies should prioritize food safety to prevent foodborne illness, particularly among young children, and highlight the need to identify effective food hygiene interventions that can be implemented in low- and middle-income countries.
Additional Information
This list of resources contains links that can be accessed when viewing the PDF on a device or via the online version of the article at
The World Health Organization provides information about foodborne diseases, food safety and the estimation of the global burden of foodborne diseases (available in several languages)
The US National Institute of Allergy and Infectious Diseases provides detailed information about several foodborne illnesses
The US Centers for Disease Control and Prevention provides information about foodborne disease outbreaks in the US and elsewhere and information about food safety in the US
The UK National Health Service Choices website provides information about food poisoning (another name for foodborne illness) and about food safety
STOP Foodborne Illness STOP Foodborne Illness, a US non-profit public-health organization, provides personal stories about foodborne illness
PMCID: PMC4668831  PMID: 26633831
8.  World Health Organization Estimates of the Global and Regional Disease Burden of 11 Foodborne Parasitic Diseases, 2010: A Data Synthesis 
PLoS Medicine  2015;12(12):e1001920.
Foodborne diseases are globally important, resulting in considerable morbidity and mortality. Parasitic diseases often result in high burdens of disease in low and middle income countries and are frequently transmitted to humans via contaminated food. This study presents the first estimates of the global and regional human disease burden of 10 helminth diseases and toxoplasmosis that may be attributed to contaminated food.
Methods and Findings
Data were abstracted from 16 systematic reviews or similar studies published between 2010 and 2015; from 5 disease data bases accessed in 2015; and from 79 reports, 73 of which have been published since 2000, 4 published between 1995 and 2000 and 2 published in 1986 and 1981. These included reports from national surveillance systems, journal articles, and national estimates of foodborne diseases. These data were used to estimate the number of infections, sequelae, deaths, and Disability Adjusted Life Years (DALYs), by age and region for 2010. These parasitic diseases, resulted in 48.4 million cases (95% Uncertainty intervals [UI] of 43.4–79.0 million) and 59,724 (95% UI 48,017–83,616) deaths annually resulting in 8.78 million (95% UI 7.62–12.51 million) DALYs. We estimated that 48% (95% UI 38%-56%) of cases of these parasitic diseases were foodborne, resulting in 76% (95% UI 65%-81%) of the DALYs attributable to these diseases. Overall, foodborne parasitic disease, excluding enteric protozoa, caused an estimated 23.2 million (95% UI 18.2–38.1 million) cases and 45,927 (95% UI 34,763–59,933) deaths annually resulting in an estimated 6.64 million (95% UI 5.61–8.41 million) DALYs. Foodborne Ascaris infection (12.3 million cases, 95% UI 8.29–22.0 million) and foodborne toxoplasmosis (10.3 million cases, 95% UI 7.40–14.9 million) were the most common foodborne parasitic diseases. Human cysticercosis with 2.78 million DALYs (95% UI 2.14–3.61 million), foodborne trematodosis with 2.02 million DALYs (95% UI 1.65–2.48 million) and foodborne toxoplasmosis with 825,000 DALYs (95% UI 561,000–1.26 million) resulted in the highest burdens in terms of DALYs, mainly due to years lived with disability. Foodborne enteric protozoa, reported elsewhere, resulted in an additional 67.2 million illnesses or 492,000 DALYs. Major limitations of our study include often substantial data gaps that had to be filled by imputation and suffer from the uncertainties that surround such models. Due to resource limitations it was also not possible to consider all potentially foodborne parasites (for example Trypanosoma cruzi).
Parasites are frequently transmitted to humans through contaminated food. These estimates represent an important step forward in understanding the impact of foodborne diseases globally and regionally. The disease burden due to most foodborne parasites is highly focal and results in significant morbidity and mortality among vulnerable populations.
In this data synthesis, Paul Robert Torgerson and colleagues estimate the global and regional disease burden of 11 foodborne parasitic diseases.
Editors' Summary
Foodborne diseases cause a large burden of illness (morbidity) and death (mortality), worldwide. More than 200 diseases can be transmitted to people through the ingestion of food contaminated by microorganisms (viruses, bacteria, and parasites) or with chemicals. Food can become contaminated on the farms where crops and animals are raised, in food processing plants, and during food storage and preparation at home and in restaurants. Food contamination can be caused by pollution of water and soil by human and animal feces and by poor hygiene practices such as not washing one’s hands after using the toilet or before handling food. Many foodborne diseases present with gastrointestinal symptoms (stomach cramps, diarrhea and vomiting) but some also affect other parts of the body and some have serious sequelae (abnormal bodily conditions or diseases arising from a pre-existing disease). For example, the parasitic tapeworm Taenia solium (which is spread by eating undercooked pork) can cause cysticercosis, an infection of tissues by larval cysts that can result in seizures, stroke and death.
Why Was This Study Done?
National and international efforts to improve food safety need accurate information on foodborne infections so, in 2007, the World Health Organization (WHO) established the Foodborne Disease Burden Epidemiology Reference Group (FERG) to provide estimates of the global and regional burden of disease attributable to foodborne illnesses. Here, researchers involved in one of FERG’s constituent task forces—the Parasitic Diseases Task Force—combine information from many different sources (a data synthesis) to provide estimates of the regional and global disease burden of ten helminth diseases and toxoplasmosis attributable to contaminated food. Examples of helminths (parasitic worms) include roundworms (Ascaris lumbricoides; heavy roundworm infections [ascariosis] can cause signs of malnutrition or even intestinal blockages), tapeworms and flukes (liver and lung flukes cause a condition known as trematodosis; frequently transmitted in undercooked fish crustacea or aquatic vegetables). Toxoplasmosis is caused by a parasite found in undercooked meat and in cat feces. If a woman becomes infected during pregnancy, she can pass the parasite onto her unborn child (congenital toxoplasmosis), thereby causing eye problems and sometimes developmental problems and seizures later in life.
What Did the Researchers Do and Find?
The researchers combined national estimates of foodborne diseases, and data from systematic reviews (studies that identify all the research on a topic using predefined criteria), national surveillance programs, and other sources to estimate the number of illnesses, sequelae, and deaths for ten helminth diseases and toxoplasmosis. They also estimated the number of disability adjusted life years (DALYs) globally and regionally for each disease. A DALY is the disease-related loss of one year of full health because of premature death or disability; DALYs provide a measure of the burden of a disease. Together, these diseases caused 48.4 million cases of illness, 59,724 deaths, and 8.78 million DALYs in 2010. The researchers estimated that 48% of these cases of parasitic diseases, resulting in 6.64 million DALYs, were transmitted by contaminated food. The commonest foodborne parasitic diseases were Ascaris infection and toxoplasmosis (12.3 million and 10.3 million cases, respectively). Foodborne cysticercosis, trematodosis and toxoplasmosis resulted in the highest disease burdens, and the largest burden of foodborne parasitic disease occurred in the Western Pacific and African regions.
What Do These Findings Mean?
The lack of reliable data on the diseases considered in this study for many regions of the world and the use of expert panels to estimate the proportion of each disease that is foodborne may limit the accuracy of these findings. Moreover, this study does not estimate the global burden of every potentially important foodborne parasitic disease. However, these findings, together with those on three foodborne enteric protozoa (single-celled parasites that infect the intestines) included in a related paper, indicate that parasites are frequently transmitted to people through contaminated food and that, although some parasites result in a low burden of disease, foodborne parasites result in significant illness and death that is often borne by relatively small populations in limited geographical areas. This information, together with other estimates on foodborne disease obtained by FERG, should facilitate the development and implementation of effective national and global food safety policies.
Additional Information
This list of resources contains links that can be accessed when viewing the PDF on a device or via the online version of the article at
A related PLOS Medicine Research Article by Kirk et al that includes data on foodborne enteric parasites is available
The World Health Organization provides information about soil-transmitted helminths, foodborne diseases, food safety, and the estimation of the global burden of foodborne diseases (available in several languages); it also provides fact sheets on cysticercosis, trematodosis, and ascariasis
The US Centers for Disease Control and Prevention (CDC) provides information about foodborne disease outbreaks in the US and elsewhere and information about food safety in the US; it also provides general information about soil-transmitted helminths; more detailed information about individual diseases caused by helminths and about toxoplasmosis can be found by visiting the CDC’s alphabetical index of parasites
The UK National Health Service Choices website provides information about roundworm infections and tapeworm infections, and about food safety
PARA-SITE, an electronic resource devoted to parasitology that is provided by the Australian Society of Parasitology, provides more information about the biology of helminth parasites
PMCID: PMC4668834  PMID: 26633705
9.  Effect of gastro-intestinal nematode infection on sheep performance: a systematic review and meta-analysis 
Parasites & Vectors  2015;8:557.
Gastrointestinal nematode (GIN) infections are common in domestic sheep and impact directly and indirectly on the health of infected animals as well as on the associated economic production. In this study, we aim at summarizing the current knowledge on the influence of GIN infections on sheep production by conducting a systematic review. A subsequent meta-analysis of relevant studies was performed to provide an estimate of the effect of GIN infections on weight gain, wool production and milk yield.
A literature search was performed on the CAB, Pubmed and Web of Science database for the period 1960–2012. Inclusion criteria were: 1) Measurement of at least one production parameter. 2) Comparison between groups of sheep with different nematode burdens. 3) Same conditions regarding all aspects except parasite burden between groups. 4) Quantitative measurements of one or more production traits.
Altogether, 88 studies describing 218 trials were included in this review. The majority of studies (86 %) reported that GIN infections had a negative effect on production but this was reported to be statistically significant in only 43 % of the studies. Meta-analysis indicated that performances of sheep infected with nematodes was 85, 90 and 78 % of the performance in uninfected individuals for weight gain, wool production and milk yield respectively. Our results suggest a possible reporting bias or small study effect for the estimation of the impact of GIN infections on weight gain. Finally, a general linear model provided an estimate for the decrease in weight gain in relation to the increase in faecal egg count of nematodes.
This study underlines the importance of GIN infections for sheep production and highlights the need to improve parasite management in sheep, in particular in face of challenges such as anthelmintic resistance.
Electronic supplementary material
The online version of this article (doi:10.1186/s13071-015-1164-z) contains supplementary material, which is available to authorized users.
PMCID: PMC4619485  PMID: 26496893
Sheep; Gastro-intestinal nematodes; Impact; Weight; Wool; Milk; Production
10.  Global Burden of Leptospirosis: Estimated in Terms of Disability Adjusted Life Years 
PLoS Neglected Tropical Diseases  2015;9(10):e0004122.
Leptospirosis, a spirochaetal zoonosis, occurs in diverse epidemiological settings and affects vulnerable populations, such as rural subsistence farmers and urban slum dwellers. Although leptospirosis can cause life-threatening disease, there is no global burden of disease estimate in terms of Disability Adjusted Life Years (DALYs) available.
Methodology/Principal Findings
We utilised the results of a parallel publication that reported global estimates of morbidity and mortality due to leptospirosis. We estimated Years of Life Lost (YLLs) from age and gender stratified mortality rates. Years of Life with Disability (YLDs) were developed from a simple disease model indicating likely sequelae. DALYs were estimated from the sum of YLLs and YLDs. The study suggested that globally approximately 2·90 million DALYs are lost per annum (UIs 1·25–4·54 million) from the approximately annual 1·03 million cases reported previously. Males are predominantly affected with an estimated 2·33 million DALYs (UIs 0·98–3·69) or approximately 80% of the total burden. For comparison, this is over 70% of the global burden of cholera estimated by GBD 2010. Tropical regions of South and South-east Asia, Western Pacific, Central and South America, and Africa had the highest estimated leptospirosis disease burden.
Leptospirosis imparts a significant health burden worldwide, which approach or exceed those encountered for a number of other zoonotic and neglected tropical diseases. The study findings indicate that highest burden estimates occur in resource-poor tropical countries, which include regions of Africa where the burden of leptospirosis has been under-appreciated and possibly misallocated to other febrile illnesses such as malaria.
Author Summary
Leptospirosis is a zoonotic bacterial disease that affects vulnerable populations such as rural subsistence farmers and urban slum dwellers. Although leptospirosis can cause life-threatening clinical manifestations such as pulmonary hemorrhage syndrome and has a worldwide distribution, to date, the global burden of leptospirosis has not been estimated. The estimated 1.03 million cases annually result in a total of approximately 2.90 million Disability Adjusted Life Years. For comparison, this is over 70% of the global burden of cholera. Most of this burden of leptospirosis is the result of premature death and is suffered disproportionately by young adult males in resource-poor tropical countries. These estimates place leptospirosis as a leading cause of disease burden amongst zoonotic agents.
PMCID: PMC4591975  PMID: 26431366
11.  Global Morbidity and Mortality of Leptospirosis: A Systematic Review 
PLoS Neglected Tropical Diseases  2015;9(9):e0003898.
Leptospirosis, a spirochaetal zoonosis, occurs in diverse epidemiological settings and affects vulnerable populations, such as rural subsistence farmers and urban slum dwellers. Although leptospirosis is a life-threatening disease and recognized as an important cause of pulmonary haemorrhage syndrome, the lack of global estimates for morbidity and mortality has contributed to its neglected disease status.
Methodology/Principal Findings
We conducted a systematic review of published morbidity and mortality studies and databases to extract information on disease incidence and case fatality ratios. Linear regression and Monte Carlo modelling were used to obtain age and gender-adjusted estimates of disease morbidity for countries and Global Burden of Disease (GBD) and WHO regions. We estimated mortality using models that incorporated age and gender-adjusted disease morbidity and case fatality ratios. The review identified 80 studies on disease incidence from 34 countries that met quality criteria. In certain regions, such as Africa, few quality assured studies were identified. The regression model, which incorporated country-specific variables of population structure, life expectancy at birth, distance from the equator, tropical island, and urbanization, accounted for a significant proportion (R2 = 0.60) of the variation in observed disease incidence. We estimate that there were annually 1.03 million cases (95% CI 434,000–1,750,000) and 58,900 deaths (95% CI 23,800–95,900) due to leptospirosis worldwide. A large proportion of cases (48%, 95% CI 40–61%) and deaths (42%, 95% CI 34–53%) were estimated to occur in adult males with age of 20–49 years. Highest estimates of disease morbidity and mortality were observed in GBD regions of South and Southeast Asia, Oceania, Caribbean, Andean, Central, and Tropical Latin America, and East Sub-Saharan Africa.
Leptospirosis is among the leading zoonotic causes of morbidity worldwide and accounts for numbers of deaths, which approach or exceed those for other causes of haemorrhagic fever. Highest morbidity and mortality were estimated to occur in resource-poor countries, which include regions where the burden of leptospirosis has been underappreciated.
Author Summary
Leptospirosis is a zoonotic bacterial disease that affects vulnerable populations such as rural subsistence farmers and urban slum dwellers. Although leptospirosis causes life-threatening clinical manifestations, such as pulmonary hemorrhage syndrome, and has a worldwide distribution, the key barrier to addressing this neglected disease has been insufficient data on its disease burden. We searched published literature and grey literature studies on leptospirosis and using information collected on disease incidence and case fatality, estimated leptospirosis incidence and mortality at country, regional and global level. Overall leptospirosis was estimated to cause 1.03 million cases and 58,900 deaths each year. These estimates place leptospirosis as a leading zoonotic cause of morbidity and mortality. In addition, morbidity and mortality was greatest in the poorest regions of the world and in areas where surveillance is not routinely performed.
PMCID: PMC4574773  PMID: 26379143
12.  Data-driven methods for imputing national-level incidence in global burden of disease studies 
To develop transparent and reproducible methods for imputing missing data on disease incidence at national-level for the year 2005.
We compared several models for imputing missing country-level incidence rates for two foodborne diseases – congenital toxoplasmosis and aflatoxin-related hepatocellular carcinoma. Missing values were assumed to be missing at random. Predictor variables were selected using least absolute shrinkage and selection operator regression. We compared the predictive performance of naive extrapolation approaches and Bayesian random and mixed-effects regression models. Leave-one-out cross-validation was used to evaluate model accuracy.
The predictive accuracy of the Bayesian mixed-effects models was significantly better than that of the naive extrapolation method for one of the two disease models. However, Bayesian mixed-effects models produced wider prediction intervals for both data sets.
Several approaches are available for imputing missing data at national level. Strengths of a hierarchical regression approach for this type of task are the ability to derive estimates from other similar countries, transparency, computational efficiency and ease of interpretation. The inclusion of informative covariates may improve model performance, but results should be appraised carefully.
PMCID: PMC4431555  PMID: 26229187
13.  Observed management practices in relation to the risk of infection with paratuberculosis and to the spread of Mycobacterium avium subsp. paratuberculosis in Swiss dairy and beef herds 
BMC Veterinary Research  2014;10:132.
Many studies have been conducted to define risk factors for the transmission of bovine paratuberculosis, mostly in countries with large herds. Little is known about the epidemiology in infected Swiss herds and risk factors important for transmission in smaller herds. Therefore, the presence of known factors which might favor the spread of paratuberculosis and could be related to the prevalence at animal level of fecal shedding of Mycobacterium avium subsp. paratuberculosis were assessed in 17 infected herds (10 dairy, 7 beef). Additionally, the level of knowledge of herd managers about the disease was assessed. In a case–control study with 4 matched negative control herds per infected herd, the association of potential risk factors with the infection status of the herd was investigated.
Exposure of the young stock to feces of older animals was frequently observed in infected and in control herds. The farmers’ knowledge about paratuberculosis was very limited, even in infected herds. An overall prevalence at animal level of fecal shedding of Mycobacterium avium subsp. paratuberculosis of 6.1% was found in infected herds, whereby shedders younger than 2 years of age were found in 46.2% of the herds where the young stock was available for testing. Several factors related to contamination of the heifer area with cows’ feces and the management of the calving area were found to be significantly associated with the within-herd prevalence. Animal purchase was associated with a positive herd infection status (OR = 7.25, p = 0.004).
Numerous risk factors favoring the spread of Mycobacterium avium subsp. paratuberculosis from adult animals to the young stock were observed in infected Swiss dairy and beef herds, which may be amenable to improvement in order to control the disease. Important factors were contamination of the heifer and the calving area, which were associated with higher within-herd prevalence of fecal shedding. The awareness of farmers of paratuberculosis was very low, even in infected herds. Animal purchase in a herd was significantly associated with the probability of a herd to be infected and is thus the most important factor for the control of the spread of disease between farms.
PMCID: PMC4065578  PMID: 24930008
Paratuberculosis; Johne’s disease; Mycobacterium avium ssp. paratuberculosis; Infection; Awareness; Risk factor; Control; Dairy; Beef
14.  Dynamics of the Force of Infection: Insights from Echinococcus multilocularis Infection in Foxes 
Characterizing the force of infection (FOI) is an essential part of planning cost effective control strategies for zoonotic diseases. Echinococcus multilocularis is the causative agent of alveolar echinococcosis in humans, a serious disease with a high fatality rate and an increasing global spread. Red foxes are high prevalence hosts of E. multilocularis. Through a mathematical modelling approach, using field data collected from in and around the city of Zurich, Switzerland, we find compelling evidence that the FOI is periodic with highly variable amplitude, and, while this amplitude is similar across habitat types, the mean FOI differs markedly between urban and periurban habitats suggesting a considerable risk differential. The FOI, during an annual cycle, ranges from (0.1,0.8) insults (95% CI) in urban habitat in the summer to (9.4, 9.7) (95% CI) in periurban (rural) habitat in winter. Such large temporal and spatial variations in FOI suggest that control strategies are optimal when tailored to local FOI dynamics.
Author Summary
Human alveolar echinococcosis (AE) is caused by the fox tapeworm E. multilocularis and has a high fatality rate if untreated. The frequency of the tapeworm in foxes can be reduced through the regular distribution of anthelmintic baits and thus decrease the risk of zoonotic transmission. Here, we estimate the force of infection to foxes using a mathematical model and data from necropsied foxes. The results suggest that the frequency of anthelmintic baiting of foxes can be optimised to local variations in transmission that depend upon season and type of fox habitat.
PMCID: PMC3961194  PMID: 24651596
15.  The Burden of Parasitic Zoonoses in Nepal: A Systematic Review 
Parasitic zoonoses (PZs) pose a significant but often neglected threat to public health, especially in developing countries. In order to obtain a better understanding of their health impact, summary measures of population health may be calculated, such as the Disability-Adjusted Life Year (DALY). However, the data required to calculate such measures are often not readily available for these diseases, which may lead to a vicious circle of under-recognition and under-funding.
We examined the burden of PZs in Nepal through a systematic review of online and offline data sources. PZs were classified qualitatively according to endemicity, and where possible a quantitative burden assessment was conducted in terms of the annual number of incident cases, deaths and DALYs.
Principal Findings
Between 2000 and 2012, the highest annual burden was imposed by neurocysticercosis and congenital toxoplasmosis (14,268 DALYs [95% Credibility Interval (CrI): 5450–27,694] and 9255 DALYs [95% CrI: 6135–13,292], respectively), followed by cystic echinococcosis (251 DALYs [95% CrI: 105–458]). Nepal is probably endemic for trichinellosis, toxocarosis, diphyllobothriosis, foodborne trematodosis, taeniosis, and zoonotic intestinal helminthic and protozoal infections, but insufficient data were available to quantify their health impact. Sporadic cases of alveolar echinococcosis, angiostrongylosis, capillariosis, dirofilariosis, gnathostomosis, sparganosis and cutaneous leishmaniosis may occur.
In settings with limited surveillance capacity, it is possible to quantify the health impact of PZs and other neglected diseases, thereby interrupting the vicious circle of neglect. In Nepal, we found that several PZs are endemic and are imposing a significant burden to public health, higher than that of malaria, and comparable to that of HIV/AIDS. However, several critical data gaps remain. Enhanced surveillance for the endemic PZs identified in this study would enable additional burden estimates, and a more complete picture of the impact of these diseases.
Author Summary
Various parasites that infect humans require animals in some stage of their life cycle. Infection with these so-called zoonotic parasites may vary from asymptomatic carriership to long-term morbidity and even death. Although data are still scarce, it is clear that parasitic zoonoses (PZs) present a significant burden for public health, particularly in poor and marginalized communities. So far, however, there has been relatively little attention to this group of diseases, causing various PZs to be labeled neglected tropical diseases. In this study, the authors reviewed a large variety of data sources to study the relevance and importance of PZs in Nepal. It was found that a large number of PZs are present in Nepal and are imposing an impact higher than that of malaria and comparable to that of HIV/AIDS. These results therefore suggest that PZs deserve greater attention and more intensive surveillance. Furthermore, this study has shown that even in settings with limited surveillance capacity, it is possible to quantify the impact of neglected diseases and, consequently, to break the vicious circle of neglect.
PMCID: PMC3879239  PMID: 24392178
16.  A Systematic Review of the Epidemiology of Echinococcosis in Domestic and Wild Animals 
Human echinococcosis is a neglected zoonosis caused by parasites of the genus Echinococcus. The most frequent clinical forms of echinococcosis, cystic echinococcosis (CE) and alveolar echinococcosis (AE), are responsible for a substantial health and economic burden, particularly to low-income societies. Quantitative epidemiology can provide important information to improve the understanding of parasite transmission and hence is an important part of efforts to control this disease. The purpose of this review is to give an insight on factors associated with echinococcosis in animal hosts by summarising significant results reported from epidemiological studies identified through a systematic search.
Methodology and Principal Findings
The systematic search was conducted mainly in electronic databases but a few additional records were obtained from other sources. Retrieved entries were examined in order to identify available peer-reviewed epidemiological studies that found significant risk factors for infection using associative statistical methods. One hundred studies met the eligibility criteria and were suitable for data extraction. Epidemiological factors associated with increased risk of E. granulosus infection in dogs included feeding with raw viscera, possibility of scavenging dead animals, lack of anthelmintic treatment and owners' poor health education and indicators of poverty. Key factors associated with E. granulosus infection in intermediate hosts were related to the hosts' age and the intensity of environmental contamination with parasite eggs. E. multilocularis transmission dynamics in animal hosts depended on the interaction of several ecological factors, such as hosts' population densities, host-prey interactions, landscape characteristics, climate conditions and human-related activities.
Results derived from epidemiological studies provide a better understanding of the behavioural, biological and ecological factors involved in the transmission of this parasite and hence can aid in the design of more effective control strategies.
Author Summary
Echinococcosis is considered a neglected zoonotic disease caused by the larval form of Echinococcus spp. tapeworms. Humans become infected through the accidental intake of parasitic eggs excreted by the faeces of definitive hosts (dogs, foxes and other canids). Infection involves the development of cysts, primarily in the lungs and liver, causing damage as they enlarge like a slowly growing tumor. Transmission is facilitated by the general lack of awareness of infection factors and epidemiological models can identify them. Nevertheless, there has never been a systematic review summarizing the significant determinants for echinococcosis in animals. One hundred publications were included in the results after evaluating 1,935 entries and screening the references lists of the eligible papers. Principal factors associated with canine infection included the access of dogs to infected offal, allowing dogs to roam free, being a young and/or male dog and social behaviours linked with poor health conditions and poor living environments of dog owners. Ecological factors influencing E. multilocularis transmission encompassed population densities of foxes and rodents, predator-prey relationships, geographical characteristics, climate conditions and the movement of foxes towards urban areas. These findings are important, as intervention to control echinococcosis requires intervention in animal populations.
PMCID: PMC3674998  PMID: 23755310
17.  Latent-Class Methods to Evaluate Diagnostics Tests for Echinococcus Infections in Dogs 
The diagnosis of canine echinococcosis can be a challenge in surveillance studies because there is no perfect gold standard that can be used routinely. However, unknown test specificities and sensitivities can be overcome using latent-class analysis with appropriate data.
We utilised a set of faecal and purge samples used previously to explore the epidemiology of canine echinococcosis on the Tibetan plateau. Previously only the purge results were reported and analysed in a largely deterministic way. In the present study, additional diagnostic tests of copro-PCR and copro-antigen ELISA were undertaken on the faecal samples. This enabled a Bayesian analysis in a latent-class model to examine the diagnostic performance of a genus specific copro-antigen ELISA, species-specific copro-PCR and arecoline purgation. Potential covariates including co-infection with Taenia, age and sex of the dog were also explored. The dependence structure of these diagnostic tests could also be analysed.
Principle findings
The most parsimonious result, indicated by deviance-information criteria, suggested that co-infection with Taenia spp. was a significant covariate with the Echinococcus infection. The copro-PCRs had estimated sensitivities of 89% and 84% respectively for the diagnoses of Echinococcus multilocularis and E. granulosus. The specificities for the copro-PCR were estimated at 93 and 83% respectively. Copro-antigen ELISA had sensitivities of 55 and 57% for the diagnosis of E. multilocularis and E. granulosus and specificities of 71 and 69% respectively. Arecoline purgation with an assumed specificity of 100% had estimated sensitivities of 76% and 85% respectively.
This study also shows that incorporating diagnostic uncertainty, in other words assuming no perfect gold standard, and including potential covariates like sex or Taenia co-infection into the epidemiological analysis may give different results than if the diagnosis of infection status is assumed to be deterministic and this approach should therefore be used whenever possible.
Author Summary
Dogs are a key definitive host of Echinococcus spp; hence, accurate diagnosis in dogs is important for the surveillance and control of echinococcosis. A perfect diagnostic test would detect every infected dog (100% sensitivity) whilst never giving a false positive reaction in non-infected dogs (100% specificity). Since no such test exists, it is important to understand the performance of available diagnostic techniques. We used the results of a study that used three diagnostic tests on dogs from the Tibetan plateau, where there is co-endemicity of E. granulosus and E. multilocularis. In this study opro-antigen ELISA and copro-PCR diagnostic tests were undertaken on faecal samples from all animals. The dogs were also purged with arecoline hydrobromide to recover adult parasites as a highly specific but relatively insensitive third diagnostic test. We used a statistical approach (Bayesian latent-class models) to estimate simultaneously the sensitivities of all three tests and the specificities of the copro-antigen and copro-PCR tests. We also analysed how some determinants of infection can affect parasite prevalence. This approach provides a robust framework to increase the accuracy of surveillance and epidemiological studies of echinococcosis by overcoming the problems of poor diagnostic test performance.
PMCID: PMC3573084  PMID: 23459420
18.  Toxoplasma gondii Infection in Kyrgyzstan: Seroprevalence, Risk Factor Analysis, and Estimate of Congenital and AIDS-Related Toxoplasmosis 
HIV-prevalence, as well as incidence of zoonotic parasitic diseases like cystic echinococcosis, has increased in the Kyrgyz Republic due to fundamental socio-economic changes after the breakdown of the Soviet Union. The possible impact on morbidity and mortality caused by Toxoplasma gondii infection in congenital toxoplasmosis or as an opportunistic infection in the emerging AIDS pandemic has not been reported from Kyrgyzstan.
Methodology/Principal Findings
We screened 1,061 rural and 899 urban people to determine the seroprevalence of T. gondii infection in 2 representative but epidemiologically distinct populations in Kyrgyzstan. The rural population was from a typical agricultural district where sheep husbandry is a major occupation. The urban population was selected in collaboration with several diagnostic laboratories in Bishkek, the largest city in Kyrgyzstan. We designed a questionnaire that was used on all rural subjects so a risk-factor analysis could be undertaken. The samples from the urban population were anonymous and only data with regard to age and gender was available. Estimates of putative cases of congenital and AIDS-related toxoplasmosis in the whole country were made from the results of the serology. Specific antibodies (IgG) against Triton X-100 extracted antigens of T. gondii tachyzoites from in vitro cultures were determined by ELISA. Overall seroprevalence of infection with T. gondii in people living in rural vs. urban areas was 6.2% (95%CI: 4.8–7.8) (adjusted seroprevalence based on census figures 5.1%, 95% CI 3.9–6.5), and 19.0% (95%CI: 16.5–21.7) (adjusted 16.4%, 95% CI 14.1–19.3), respectively, without significant gender-specific differences. The seroprevalence increased with age. Independently low social status increased the risk of Toxoplasma seropositivity while increasing numbers of sheep owned decreased the risk of seropositivity. Water supply, consumption of unpasteurized milk products or undercooked meat, as well as cat ownership, had no significant influence on the risk for seropositivity.
We present a first seroprevalence analysis for human T. gondii infection in the Kyrgyz Republic. Based on these data we estimate that 173 (95% CI 136–216) Kyrgyz children will be born annually to mothers who seroconverted to toxoplasmosis during pregnancy. In addition, between 350 and 1,000 HIV-infected persons are currently estimated to be seropositive for toxoplasmosis. Taken together, this suggests a substantial impact of congenital and AIDS-related symptomatic toxoplasmosis on morbidity and mortality in Kyrgyzstan.
Author Summary
A serological study on toxoplasmosis was undertaken in a rural and urban population in Kyrgyzstan. The observed seroprevalence was adjusted because of differences between age and gender stratifications in the study group compared to population census figures. This gave an estimated seroprevalence in rural and urban populations of 5.1% and 16.4% respectively. In our analysis we determined the risk-factors for infection in the rural population to be age, low social-status and low number of sheep owned. While the seroprevalence in this rural population was relatively low, the seroprevalence found in the urban population of Bishkek correlated better with international data. Extrapolating from our data, about 173 seroconversions during pregnancy may be expected annually in Kyrgyzstan. In addition, considering a prevalence of HIV-Toxoplasma-co-infection between 7/100,000 (official HIV-prevalence data) and 19.4/100,000 (UNAIDS-estimates), 350–1,000 people are at risk for AIDS-related toxoplasmosis. Therefore, in the face of the rising prevalence of HIV infection education of medical personnel on treatment and prevention of toxoplasmosis is recommended.
PMCID: PMC3566989  PMID: 23409201
19.  A tutorial in estimating the prevalence of disease in humans and animals in the absence of a gold standard diagnostic 
Epidemiological methods for estimating disease prevalence in humans and other animals in the absence of a gold standard diagnostic test are well established. Despite this, reporting apparent prevalence is still standard practice in public health studies and disease control programmes, even though apparent prevalence may differ greatly from the true prevalence of disease. Methods for estimating true prevalence are summarized and reviewed. A computing appendix is also provided which contains a brief guide in how to easily implement some of the methods presented using freely available software.
PMCID: PMC3558341  PMID: 23270542
20.  The Global Burden of Alveolar Echinococcosis 
Human alveolar echinococcosis (AE) is known to be common in certain rural communities in China whilst it is generally rare and sporadic elsewhere. The objective of this study was to provide a first estimate of the global incidence of this disease by country. The second objective was to estimate the global disease burden using age and gender stratified incidences and estimated life expectancy with the disease from previous results of survival analysis. Disability weights were suggested from previous burden studies on echinococcosis.
Methodology/Principal Findings
We undertook a detailed review of published literature and data from other sources. We were unable to make a standardised systematic review as the quality of the data was highly variable from different countries and hence if we had used uniform inclusion criteria many endemic areas lacking data would not have been included. Therefore we used evidence based stochastic techniques to model uncertainty and other modelling and estimating techniques, particularly in regions where data quality was poor. We were able to make an estimate of the annual global incidence of disease and annual disease burden using standard techniques for calculation of DALYs. Our studies suggest that there are approximately 18,235 (CIs 11,900–28,200) new cases of AE per annum globally with 16,629 (91%) occurring in China and 1,606 outside China. Most of these cases are in regions where there is little treatment available and therefore will be fatal cases. Based on using disability weights for hepatic carcinoma and estimated age and gender specific incidence we were able to calculate that AE results in a median of 666,434 DALYs per annum (CIs 331,000-1.3 million).
The global burden of AE is comparable to several diseases in the neglected tropical disease cluster and is likely to be one of the most important diseases in certain communities in rural China on the Tibetan plateau.
Author Summary
Human alveolar echinococcosis (AE), caused by the larval stage of the fox tapeworm Echinococcus multilocularis, is amongst the world's most dangerous zoonoses. Transmission to humans is by consumption of parasite eggs which are excreted in the faeces of the definitive hosts: foxes and, increasingly, dogs. Transmission can be through contact with the definitive host or indirectly through contamination of food or possibly water with parasite eggs. We made an intensive search of English, Russian, Chinese and other language databases. We targeted data which could give country specific incidence or prevalence of disease and searched for data from every country we believed to be endemic for AE. We also used data from other sources (often unpublished). From this information we were able to make an estimate of the annual global incidence of disease and disease burden using standard techniques for calculation of DALYs. Our studies suggest that AE results in a median of 18,235 cases globally with a burden of 666,433 DALYs per annum. This is the first estimate of the global burden of AE both in terms of global incidence and DALYs and demonstrates the burden of AE is comparable to several diseases in the neglected tropical disease cluster.
PMCID: PMC2889826  PMID: 20582310
21.  Use of Recombinant Antigens To Detect Antibodies against Mycoplasma suis, with Correlation of Serological Results to Hematological Findings▿  
Clinical and Vaccine Immunology : CVI  2007;14(12):1616-1622.
Porcine eperythrozoonosis is a disease with worldwide distribution caused by the unculturable hemotrophic bacterium Mycoplasma suis. Current serological testing utilizes crude M. suis antigens purified from the blood of experimentally infected pigs. These antigens show high variability and are restricted to specialized laboratories. We evaluated a novel serological assay based on two recombinant M. suis antigens (rMSG1 and rHspA1). Antigen specificity was proven by means of sera raised against nonhemotrophic mycoplasma and other relevant bacteria. Using experimental and convalescent-phase sera, rMSG1 and rHspA1 enzyme-linked immunosorbent assays (ELISAs) demonstrated sensitivities, specificities, and predictive values (94.0 to 100.0%) equal to or higher than those of the M. suis whole-cell ELISA. Field samples from 120 weaning piglets grouped by quantitative PCR results were used to evaluate the diagnostic capability of the new ELISA systems in comparison to that of the whole-cell ELISA. Assuming a 100.0% specificity of the PCR, the whole-cell ELISA, rHspA1 ELISA, and rMSG1 ELISA showed specificities of 84.8%, 83.8%, and 90.6% and sensitivities of 61.5%, 74.0% and 58.1%, respectively. Cohen's kappa coefficients comparing the recombinant ELISAs to the whole-cell ELISA indicate moderate to substantial agreement. The detection of anti-MSG1 and/or anti-HspA1 antibodies in pigs was significantly correlated with decreased hematocrit, erythrocyte numbers, and hemoglobin concentrations, indicating that a single seropositive result is connected with clinical and etiological significance. In conclusion, rMSG1 and rHspA1 are sensitive and specific serological and infection markers which are for the first time used independently of animal experiments. They are especially fit to be used in routine diagnosis, pathogenesis studies, and large-scale epidemiological investigations.
PMCID: PMC2168379  PMID: 17942612
22.  Human Alveolar Echinococcosis after Fox Population Increase, Switzerland 
Emerging Infectious Diseases  2007;13(6):878-882.
An increase in fox population has led to an increase in incidence of human alveolar echinococcosis.
We analyzed databases spanning 50 years, which included retrospective alveolar echinococcosis (AE) case-finding studies and databases of the 3 major centers for treatment of AE in Switzerland. A total of 494 cases were recorded. Annual incidence of AE per 100,000 population increased from 0.12– 0.15 during 1956–1992 and a mean of 0.10 during 1993–2000 to a mean of 0.26 during 2001–2005. Because the clinical stage of the disease did not change between observation periods, this increase cannot be explained by improved diagnosis. Swiss hunting statistics suggested that the fox population increased 4-fold from 1980 through 1995 and has persisted at these higher levels. Because the period between infection and development of clinical disease is long, the increase in the fox population and high Echinococcus multilocularis prevalence rates in foxes in rural and urban areas may have resulted in an emerging epidemic of AE 10–15 years later.
PMCID: PMC2792858  PMID: 17553227
Alveolar echinococcosis; Echinococcus multilocularis; epidemiology; fox (Vulpes vulpes); zoonosis; incidence; Switzerland; research
23.  In Vitro Metacestodicidal Activities of Genistein and Other Isoflavones against Echinococcus multilocularis and Echinococcus granulosus▿  
Antimicrobial Agents and Chemotherapy  2006;50(11):3770-3778.
Echinococcus multilocularis and Echinococcus granulosus metacestode infections in humans cause alveolar echinococcosis and cystic echinococcosis, respectively, in which metacestode development in visceral organs often results in particular organ failure. Further, cystic hydatidosis in farm animals causes severe economic losses. Although benzimidazole derivatives such as mebendazole and albendazole are being used as therapeutic agents, there is often no complete recovery after treatment. Hence, in searching for novel treatment options, we examined the in vitro efficacies of a number of isoflavones against Echinococcus metacestodes and protoscoleces. The most prominent isoflavone, genistein, exhibits significant metacestodicidal activity in vitro. However, genistein binds to the estrogen receptor and can thus induce estrogenic effects, which is a major concern during long-term chemotherapy. We have therefore investigated the activities of a number of synthetic genistein derivatives carrying a modified estrogen receptor binding site. One of these, Rm6423, induced dramatic breakdown of the structural integrity of the metacestode germinal layer of both species within 5 to 7 days of in vitro treatment. Further, examination of the culture medium revealed increased leakage of parasite proteins into the medium during treatment, but zymography demonstrated a decrease in the activity of metalloproteases. Moreover, two of the genistein derivatives, Rm6423 and Rm6426, induced considerable damage in E. granulosus protoscoleces, rendering them nonviable. These findings demonstrate that synthetic isoflavones exhibit distinct in vitro effects on Echinococcus metacestodes and protoscoleces, which could potentially be exploited further for the development of novel chemotherapeutical tools against larval-stage Echinococcus infection.
PMCID: PMC1635224  PMID: 16954323
24.  Global Socioeconomic Impact of Cystic Echinococcosis 
Emerging Infectious Diseases  2006;12(2):296-303.
Because the human and economic losses of cystic echinococcosis are substantial, global prevention and control measures should be increased.
Cystic echinococcosis (CE) is an emerging zoonotic parasitic disease throughout the world. Human incidence and livestock prevalence data of CE were gathered from published literature and the Office International des Epizooties databases. Disability-adjusted life years (DALYs) and monetary losses, resulting from human and livestock CE, were calculated from recorded human and livestock cases. Alternative values, assuming substantial underreporting, are also reported. When no underreporting is assumed, the estimated human burden of disease is 285,407 (95% confidence interval [CI], 218,515–366,133) DALYs or an annual loss of US $193,529,740 (95% CI, $171,567,331–$217,773,513). When underreporting is accounted for, this amount rises to 1,009,662 (95% CI, 862,119–1,175,654) DALYs or US $763,980,979 (95% CI, $676,048,731–$857,982,275). An annual livestock production loss of at least US $141,605,195 (95% CI, $101,011,553–$183,422,465) and possibly up to US $2,190,132,464 (95% CI, $1,572,373,055–$2,951,409,989) is also estimated. This initial valuation demonstrates the necessity for increased monitoring and global control of CE.
PMCID: PMC3373106  PMID: 16494758
echinococcosis; cestodes; cost of illness; burden of illness; economics; zoonoses
25.  Dog ownership, dog behaviour and transmission of Echinococcus spp. in the Alay Valley, southern Kyrgyzstan 
Parasitology  2013;140(13):1674-1684.
Echinococcosis is a re-emerging zoonotic disease in Kyrgyzstan, and the incidence of human infection has increased substantially since the collapse of the Soviet Union in 1991. Domestic dogs are hosts of Echinococcus spp. and play an important role in the transmission of these parasites. The demography, ecology and behaviour of dogs are therefore relevant in studying Echinococcus spp. transmission. Dog demographics, roles of dogs, dog movements and faecal environmental contamination were assessed in four rural communities in the Alay Valley, southern Kyrgyzstan. Arecoline purge data revealed for the first time that E. granulosus, E. canadensis and E. multilocularis were present in domestic dogs in the Alay Valley. Surveys revealed that many households had dogs and that dogs played various roles in the communities, as pets, guard dogs or sheep dogs. Almost all dogs were free to roam, and GPS data revealed that many moved outside their communities, thus being able to scavenge offal and consume rodents. Faecal environmental contamination was high, presenting a significant infection risk to the local communities.
PMCID: PMC3806042  PMID: 23985326
Echinococcus granulosus; Echinococcus canadensis; Echinococcus multilocularis; Kyrgyzstan; domestic dogs; demography; behaviour

Results 1-25 (25)