Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)
Year of Publication
Document Types
1.  A Novel Arginine to Tryptophan (R144W) Mutation in Troponin T (cTnT) Gene in an Indian Multigenerational Family with Dilated Cardiomyopathy (FDCM) 
PLoS ONE  2014;9(7):e101451.
Cardiomyopathy is a major cause of heart failure and sudden cardiac death; several mutations in sarcomeric protein genes have been associated with this disease. Our aim in the present study is to investigate the genetic variations in Troponin T (cTnT) gene and its association with dilated cardiomyopathy (DCM) in south-Indian patients. Analyses of all the exons and exon-intron boundaries of cTnT in 147 DCM and in 207 healthy controls had revealed a total of 15 SNPs and a 5 bp INDEL; of which, polymorphic SNPs were compared with the HapMap population data. Interestingly, a novel R144W mutation, that substitutes polar-neutral tryptophan for a highly conserved basic arginine in cTnT, altering the charge drastically, was identified in a DCM, with a family history of sudden-cardiac death (SCD). This mutation was found within the tropomyosin (TPM1) binding domain, and was evolutionarily conserved across species, therefore it is expected to have a significant impact on the structure and function of the protein. Family studies had revealed that the R144W is co-segregating with disease in the family as an autosomal dominant trait, but it was completely absent in 207 healthy controls and in 162 previously studied HCM patients. Further screening of the proband and three of his family members (positive for R144W mutant) with eight other genes β-MYH7, MYBPC3, TPM1, TNNI3, TTN, ACTC, MYL2 and MYL3, did not reveal any disease causing mutation, proposing the absence of compound heterozygosity. Therefore, we strongly suggest that the novel R144W unique/private mutant identified in this study is associated with FDCM. This is furthermore signifying the unique genetic architecture of Indian population.
PMCID: PMC4081629  PMID: 24992688
2.  Genetic Structure of Tibeto-Burman Populations of Bangladesh: Evaluating the Gene Flow along the Sides of Bay-of-Bengal 
PLoS ONE  2013;8(10):e75064.
Human settlement and migrations along sides of Bay-of-Bengal have played a vital role in shaping the genetic landscape of Bangladesh, Eastern India and Southeast Asia. Bangladesh and Northeast India form the vital land bridge between the South and Southeast Asia. To reconstruct the population history of this region and to see whether this diverse region geographically acted as a corridor or barrier for human interaction between South Asia and Southeast Asia, we, for the first time analyzed high resolution uniparental (mtDNA and Y chromosome) and biparental autosomal genetic markers among aboriginal Bangladesh tribes currently speaking Tibeto-Burman language. All the three studied populations; Chakma, Marma and Tripura from Bangladesh showed strikingly high homogeneity among themselves and strong affinities to Northeast Indian Tibeto-Burman groups. However, they show substantially higher molecular diversity than Northeast Indian populations. Unlike Austroasiatic (Munda) speakers of India, we observed equal role of both males and females in shaping the Tibeto-Burman expansion in Southern Asia. Moreover, it is noteworthy that in admixture proportion, TB populations of Bangladesh carry substantially higher mainland Indian ancestry component than Northeast Indian Tibeto-Burmans. Largely similar expansion ages of two major paternal haplogroups (O2a and O3a3c), suggested that they arose before the differentiation of any language group and approximately at the same time. Contrary to the scenario proposed for colonization of Northeast India as male founder effect that occurred within the past 4,000 years, we suggest a significantly deep colonization of this region. Overall, our extensive analysis revealed that the population history of South Asian Tibeto-Burman speakers is more complex than it was suggested before.
PMCID: PMC3794028  PMID: 24130682
3.  Genetic and functional evaluation of the role of DLL1 in susceptibility to visceral leishmaniasis in India 
Chromosome 6q26–27 is linked to susceptibility to visceral leishmaniasis (VL) in Brazil and Sudan. DLL1 encoding the Delta-like 1 ligand for Notch 3 was implicated as the etiological gene. DLL1 belongs to the family of Notch ligands known to selectively drive antigen-specific CD4 T helper 1 cell responses, which are important in protective immune response in leishmaniasis. Here we provide further genetic and functional evidence that supports a role for DLL1 in a well-powered population-based study centred in the largest global focus of VL in India. Twenty-one single nucleotide polymorphisms (SNPs) at PHF10/C6orf70/DLL1/FAM120B/PSMB1/TBP were genotyped in 941 cases and 992 controls. Logistic regression analysis under an additive model showed association between VL and variants at DLL1 and FAM120B, with top associations (rs9460106, OR=1.17, 95%CI 1.01–1.35, P=0.033; rs2103816, OR=1.16, 95%CI 1.01–1.34, P=0.039) robust to analysis using caste as a covariate to take account of population substructure. Haplotype analysis taking population substructure into account identified a common 2-SNP risk haplotype (frequency 0.43; P=0.028) at FAM120B, while the most significant protective haplotype (frequency 0.18; P=0.007) was a 5-SNP haplotype across the interval 5’ of both DLL1 (negative strand) and FAM120B (positive strand) and extending to intron 4 of DLL1. Quantitative RT/PCR was used to compare expression of 6q27 genes in paired pre- and post-treatment splenic aspirates from VL patients (N=19). DLL1 was the only gene to show differential expression that was higher (P<0.0001) in pre- compared to post-treatment samples, suggesting that regulation of gene expression was important in disease pathogenesis. This well-powered genetic and functional study in an Indian population provides evidence supporting DLL1 as the etiological gene contributing to susceptibility to VL at Chromosome 6q27, confirming the potential for polymorphism at DLL1 to act as a genetic risk factor across the epidemiological divides of geography and parasite species.
PMCID: PMC3651914  PMID: 22561395
visceral leishmaniasis; DLL1; genetic association; Notch signalling
4.  Mutations in the β-Tubulin Gene TUBB5 Cause Microcephaly with Structural Brain Abnormalities 
Cell reports  2012;2(6):1554-1562.
The formation of the mammalian cortex requires the generation, migration, and differentiation of neurons. The vital role that the microtubule cytoskeleton plays in these cellular processes is reflected by the discovery that mutations in various tubulin isotypes cause different neurodevelopmental diseases, including lissencephaly (TUBA1A), polymicrogyria (TUBA1A, TUBB2B, TUBB3), and an ocular motility disorder (TUBB3). Here, we show that Tubb5 is expressed in neurogenic progenitors in the mouse and that its depletion in vivo perturbs the cell cycle of progenitors and alters the position of migrating neurons. We report the occurrence of three microcephalic patients with structural brain abnormalities harboring de novo mutations in TUBB5 (M299V, V353I, and E401K). These mutant proteins, which affect the chaperone-dependent assembly of tubulin heterodimers in different ways, disrupt neurogenic division and/or migration in vivo. Our results provide insight into the functional repertoire of the tubulin gene family, specifically implicating TUBB5 in embryonic neurogenesis and microcephaly.
PMCID: PMC3595605  PMID: 23246003
5.  The Phylogeography of Y-Chromosome Haplogroup H1a1a-M82 Reveals the Likely Indian Origin of the European Romani Populations 
PLoS ONE  2012;7(11):e48477.
Linguistic and genetic studies on Roma populations inhabited in Europe have unequivocally traced these populations to the Indian subcontinent. However, the exact parental population group and time of the out-of-India dispersal have remained disputed. In the absence of archaeological records and with only scanty historical documentation of the Roma, comparative linguistic studies were the first to identify their Indian origin. Recently, molecular studies on the basis of disease-causing mutations and haploid DNA markers (i.e. mtDNA and Y-chromosome) supported the linguistic view. The presence of Indian-specific Y-chromosome haplogroup H1a1a-M82 and mtDNA haplogroups M5a1, M18 and M35b among Roma has corroborated that their South Asian origins and later admixture with Near Eastern and European populations. However, previous studies have left unanswered questions about the exact parental population groups in South Asia. Here we present a detailed phylogeographical study of Y-chromosomal haplogroup H1a1a-M82 in a data set of more than 10,000 global samples to discern a more precise ancestral source of European Romani populations. The phylogeographical patterns and diversity estimates indicate an early origin of this haplogroup in the Indian subcontinent and its further expansion to other regions. Tellingly, the short tandem repeat (STR) based network of H1a1a-M82 lineages displayed the closest connection of Romani haplotypes with the traditional scheduled caste and scheduled tribe population groups of northwestern India.
PMCID: PMC3509117  PMID: 23209554
6.  High prevalence of Arginine to Glutamine Substitution at 98, 141 and 162 positions in Troponin I (TNNI3) associated with hypertrophic cardiomyopathy among Indians 
BMC Medical Genetics  2012;13:69.
Troponin I (TNNI3) is the inhibitory subunit of the thin filament regulatory complex Troponin, which confers calcium-sensitivity to striated muscle actomyosin ATPase activity. Mutations (2-7%) in this gene had been reported in hypertrophic cardiomyopathy patients (HCM). However, the frequencies of mutations and associated clinical presentation have not been established in cardiomyopathy patients of Indian origin, hence we have undertaken this study.
We have sequenced all the exons, including the exon-intron boundaries of TNNI3 gene in 101 hypertrophic cardiomyopathy patients (HCM), along with 160 healthy controls, inhabited in the same geographical region of southern India.
Our study revealed a total of 16 mutations. Interestingly, we have observed Arginine to Glutamine (R to Q) mutation at 3 positions 98, 141 and 162, exclusively in HCM patients with family history of sudden cardiac death. The novel R98Q was observed in a severe hypertrophic obstructive cardiomyopathy patient (HOCM). The R141Q mutation was observed in two familial cases of severe asymmetric septal hypertrophy (ASH++). The R162Q mutation was observed in a ASH++ patient with mean septal thickness of 29 mm, and have also consists of allelic heterogeneity by means of having one more synonymous (E179E) mutation at g.4797: G → A: in the same exon 7, which replaces a very frequent codon (GAG: 85%) with a rare codon (GAA: 14%). Screening for R162Q mutation in all the available family members revealed its presence in 9 individuals, including 7 with allelic heterogeneity (R162Q and E179E) of which 4 were severely affected. We also found 2 novel SNPs, (g.2653; G → A and g.4003 C → T) exclusively in HCM, and in silico analysis of these SNPs have predicted to cause defect in recognition/binding sites for proteins responsible for proper splicing.
Our study has provided valuable information regarding the prevalence of TNNI3 mutations in Indian HCM patients and its risk assessment, these will help in genetic counseling and to adopt appropriate treatment strategies.
PMCID: PMC3495047  PMID: 22876777
TNNI3-Troponin I; Cardiomyopathy; SNPs; HCM; Indians; Mutations
7.  Genetic Affinities of the Central Indian Tribal Populations 
PLoS ONE  2012;7(2):e32546.
The central Indian state Madhya Pradesh is often called as ‘heart of India’ and has always been an important region functioning as a trinexus belt for three major language families (Indo-European, Dravidian and Austroasiatic). There are less detailed genetic studies on the populations inhabited in this region. Therefore, this study is an attempt for extensive characterization of genetic ancestries of three tribal populations, namely; Bharia, Bhil and Sahariya, inhabiting this region using haploid and diploid DNA markers.
Methodology/Principal Findings
Mitochondrial DNA analysis showed high diversity, including some of the older sublineages of M haplogroup and prominent R lineages in all the three tribes. Y-chromosomal biallelic markers revealed high frequency of Austroasiatic-specific M95-O2a haplogroup in Bharia and Sahariya, M82-H1a in Bhil and M17-R1a in Bhil and Sahariya. The results obtained by haploid as well as diploid genetic markers revealed strong genetic affinity of Bharia (a Dravidian speaking tribe) with the Austroasiatic (Munda) group. The gene flow from Austroasiatic group is further confirmed by their Y-STRs haplotype sharing analysis, where we determined their founder haplotype from the North Munda speaking tribe, while, autosomal analysis was largely in concordant with the haploid DNA results.
Bhil exhibited largely Indo-European specific ancestry, while Sahariya and Bharia showed admixed genetic package of Indo-European and Austroasiatic populations. Hence, in a landscape like India, linguistic label doesn't unequivocally follow the genetic footprints.
PMCID: PMC3290590  PMID: 22393414
8.  Genetic and functional evaluation of the role of CXCR1 and CXCR2 in susceptibility to visceral leishmaniasis in north-east India 
BMC Medical Genetics  2011;12:162.
IL8RA and IL8RB, encoded by CXCR1 and CXCR2, are receptors for interleukin (IL)-8 and other CXC chemokines involved in chemotaxis and activation of polymorphonuclear neutrophils (PMN). Variants at CXCR1 and CXCR2 have been associated with susceptibility to cutaneous and mucocutaneous leishmaniasis in Brazil. Here we investigate the role of CXCR1/CXCR2 in visceral leishmaniasis (VL) in India.
Three single nucleotide polymorphisms (SNPs) (rs4674259, rs2234671, rs3138060) that tag linkage disequilibrium blocks across CXCR1/CXCR2 were genotyped in primary family-based (313 cases; 176 nuclear families; 836 individuals) and replication (941 cases; 992 controls) samples. Family- and population-based analyses were performed to look for association between CXCR1/CXCR2 variants and VL. Quantitative RT/PCR was used to compare CXCR1/CXCR2 expression in mRNA from paired splenic aspirates taken before and after treatment from 19 VL patients.
Family-based analysis using FBAT showed association between VL and SNPs CXCR1_rs2234671 (Z-score = 2.935, P = 0.003) and CXCR1_rs3138060 (Z-score = 2.22, P = 0.026), but not with CXCR2_rs4674259. Logistic regression analysis of the case-control data under an additive model of inheritance showed association between VL and SNPs CXCR2_rs4674259 (OR = 1.15, 95%CI = 1.01-1.31, P = 0.027) and CXCR1_rs3138060 (OR = 1.25, 95%CI = 1.02-1.53, P = 0.028), but not with CXCR1_rs2234671. The 3-locus haplotype T_G_C across these SNPs was shown to be the risk haplotype in both family- (TRANSMIT; P = 0.014) and population- (OR = 1.16, P = 0.028) samples (combined P = 0.002). CXCR2, but not CXCR1, expression was down regulated in pre-treatment compared to post-treatment splenic aspirates (P = 0.021).
This well-powered primary and replication genetic study, together with functional analysis of gene expression, implicate CXCR2 in determining outcome of VL in India.
PMCID: PMC3260103  PMID: 22171941
9.  No evidence for association between SLC11A1 and visceral leishmaniasis in India 
BMC Medical Genetics  2011;12:71.
SLC11A1 has pleiotropic effects on macrophage function and remains a strong candidate for infectious disease susceptibility. 5' and/or 3' polymorphisms have been associated with tuberculosis, leprosy, and visceral leishmaniasis (VL). Most studies undertaken to date were under-powered, and none has been replicated within a population. Association with tuberculosis has replicated variably across populations. Here we investigate SLC11A1 and VL in India.
Nine polymorphisms (rs34448891, rs7573065, rs2276631, rs3731865, rs17221959, rs2279015, rs17235409, rs17235416, rs17229009) that tag linkage disequilibrium blocks across SLC11A1 were genotyped in primary family-based (313 cases; 176 families) and replication (941 cases; 992 controls) samples. Family- and population-based analyses were performed to look for association between SLC11A1 variants and VL. Quantitative RT/PCR was used to compare SLC11A1 expression in mRNA from paired splenic aspirates taken before and after treatment from 24 VL patients carrying different genotypes at the functional promoter GTn polymorphism (rs34448891).
No associations were observed between VL and polymorphisms at SLC11A1 that were either robust to correction for multiple testing or replicated across primary and replication samples. No differences in expression of SLC11A1 were observed when comparing pre- and post-treatment samples, or between individuals carrying different genotypes at the GTn repeat.
This is the first well-powered study of SLC11A1 as a candidate for VL, which we conclude does not have a major role in regulating VL susceptibility in India.
PMCID: PMC3128845  PMID: 21599885
SLC11A1; visceral leishmaniasis; genetic susceptibility
10.  A common MYBPC3 (cardiac myosin binding protein C) variant associated with cardiomyopathies in South Asia 
Nature genetics  2009;41(2):187-191.
Heart failure is a leading cause of mortality in South Asians. However, its genetic etiology remains largely unknown1. Cardiomyopathies due to sarcomeric mutations are a major monogenic cause for heart failure (MIM600958). Here, we describe a deletion of 25 bp in the gene encoding cardiac myosin binding protein C (MYBPC3) that is associated with heritable cardiomyopathies and an increased risk of heart failure in Indian populations (initial study OR = 5.3 (95% CI = 2.3–13), P = 2 × 10−6; replication study OR = 8.59 (3.19–25.05), P = 3 × 10−8; combined OR = 6.99 (3.68–13.57), P = 4 × 10−11) and that disrupts cardiomyocyte structure in vitro. Its prevalence was found to be high (~4%) in populations of Indian subcontinental ancestry. The finding of a common risk factor implicated in South Asian subjects with cardiomyopathy will help in identifying and counseling individuals predisposed to cardiac diseases in this region.
PMCID: PMC2697598  PMID: 19151713

Results 1-10 (10)