PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
author:("Tang, xiaoi")
1.  Transcriptome-Wide Analysis of UTRs in Non-Small Cell Lung Cancer Reveals Cancer-Related Genes with SNV-Induced Changes on RNA Secondary Structure and miRNA Target Sites 
PLoS ONE  2014;9(1):e82699.
Traditional mutation assessment methods generally focus on predicting disruptive changes in protein-coding regions rather than non-coding regulatory regions like untranslated regions (UTRs) of mRNAs. The UTRs, however, are known to have many sequence and structural motifs that can regulate translational and transcriptional efficiency and stability of mRNAs through interaction with RNA-binding proteins and other non-coding RNAs like microRNAs (miRNAs). In a recent study, transcriptomes of tumor cells harboring mutant and wild-type KRAS (V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) genes in patients with non-small cell lung cancer (NSCLC) have been sequenced to identify single nucleotide variations (SNVs). About 40% of the total SNVs (73,717) identified were mapped to UTRs, but omitted in the previous analysis. To meet this obvious demand for analysis of the UTRs, we designed a comprehensive pipeline to predict the effect of SNVs on two major regulatory elements, secondary structure and miRNA target sites. Out of 29,290 SNVs in 6462 genes, we predict 472 SNVs (in 408 genes) affecting local RNA secondary structure, 490 SNVs (in 447 genes) affecting miRNA target sites and 48 that do both. Together these disruptive SNVs were present in 803 different genes, out of which 188 (23.4%) were previously known to be cancer-associated. Notably, this ratio is significantly higher (one-sided Fisher's exact test p-value = 0.032) than the ratio (20.8%) of known cancer-associated genes (n = 1347) in our initial data set (n = 6462). Network analysis shows that the genes harboring disruptive SNVs were involved in molecular mechanisms of cancer, and the signaling pathways of LPS-stimulated MAPK, IL-6, iNOS, EIF2 and mTOR. In conclusion, we have found hundreds of SNVs which are highly disruptive with respect to changes in the secondary structure and miRNA target sites within UTRs. These changes hold the potential to alter the expression of known cancer genes or genes linked to cancer-associated pathways.
doi:10.1371/journal.pone.0082699
PMCID: PMC3885406  PMID: 24416147
2.  An Integrated Model of the Transcriptome of HER2-Positive Breast Cancer 
PLoS ONE  2013;8(11):e79298.
Our goal in these analyses was to use genomic features from a test set of primary breast tumors to build an integrated transcriptome landscape model that makes relevant hypothetical predictions about the biological and/or clinical behavior of HER2-positive breast cancer. We interrogated RNA-Seq data from benign breast lesions, ER+, triple negative, and HER2-positive tumors to identify 685 differentially expressed genes, 102 alternatively spliced genes, and 303 genes that expressed single nucleotide sequence variants (eSNVs) that were associated with the HER2-positive tumors in our survey panel. These features were integrated into a transcriptome landscape model that identified 12 highly interconnected genomic modules, each of which represents a cellular processes pathway that appears to define the genomic architecture of the HER2-positive tumors in our test set. The generality of the model was confirmed by the observation that several key pathways were enriched in HER2-positive TCGA breast tumors. The ability of this model to make relevant predictions about the biology of breast cancer cells was established by the observation that integrin signaling was linked to lapatinib sensitivity in vitro and strongly associated with risk of relapse in the NCCTG N9831 adjuvant trastuzumab clinical trial dataset. Additional modules from the HER2 transcriptome model, including ubiquitin-mediated proteolysis, TGF-beta signaling, RHO-family GTPase signaling, and M-phase progression, were linked to response to lapatinib and paclitaxel in vitro and/or risk of relapse in the N9831 dataset. These data indicate that an integrated transcriptome landscape model derived from a test set of HER2-positive breast tumors has potential for predicting outcome and for identifying novel potential therapeutic strategies for this breast cancer subtype.
doi:10.1371/journal.pone.0079298
PMCID: PMC3815156  PMID: 24223926
3.  Systems Biology of the qa Gene Cluster in Neurospora crassa 
PLoS ONE  2011;6(6):e20671.
An ensemble of genetic networks that describe how the model fungal system, Neurospora crassa, utilizes quinic acid (QA) as a sole carbon source has been identified previously. A genetic network for QA metabolism involves the genes, qa-1F and qa-1S, that encode a transcriptional activator and repressor, respectively and structural genes, qa-2, qa-3, qa-4, qa-x, and qa-y. By a series of 4 separate and independent, model-guided, microarray experiments a total of 50 genes are identified as QA-responsive and hypothesized to be under QA-1F control and/or the control of a second QA-responsive transcription factor (NCU03643) both in the fungal binuclear Zn(II)2Cys6 cluster family. QA-1F regulation is not sufficient to explain the quantitative variation in expression profiles of the 50 QA-responsive genes. QA-responsive genes include genes with products in 8 mutually connected metabolic pathways with 7 of them one step removed from the tricarboxylic (TCA) Cycle and with 7 of them one step removed from glycolysis: (1) starch and sucrose metabolism; (2) glycolysis/glucanogenesis; (3) TCA Cycle; (4) butanoate metabolism; (5) pyruvate metabolism; (6) aromatic amino acid and QA metabolism; (7) valine, leucine, and isoleucine degradation; and (8) transport of sugars and amino acids. Gene products both in aromatic amino acid and QA metabolism and transport show an immediate response to shift to QA, while genes with products in the remaining 7 metabolic modules generally show a delayed response to shift to QA. The additional QA-responsive cutinase transcription factor-1β (NCU03643) is found to have a delayed response to shift to QA. The series of microarray experiments are used to expand the previously identified genetic network describing the qa gene cluster to include all 50 QA-responsive genes including the second transcription factor (NCU03643). These studies illustrate new methodologies from systems biology to guide model-driven discoveries about a core metabolic network involving carbon and amino acid metabolism in N. crassa.
doi:10.1371/journal.pone.0020671
PMCID: PMC3114802  PMID: 21695121
4.  Systems Biology of the Clock in Neurospora crassa 
PLoS ONE  2008;3(8):e3105.
A model-driven discovery process, Computing Life, is used to identify an ensemble of genetic networks that describe the biological clock. A clock mechanism involving the genes white-collar-1 and white-collar-2 (wc-1 and wc-2) that encode a transcriptional activator (as well as a blue-light receptor) and an oscillator frequency (frq) that encodes a cyclin that deactivates the activator is used to guide this discovery process through three cycles of microarray experiments. Central to this discovery process is a new methodology for the rational design of a Maximally Informative Next Experiment (MINE), based on the genetic network ensemble. In each experimentation cycle, the MINE approach is used to select the most informative new experiment in order to mine for clock-controlled genes, the outputs of the clock. As much as 25% of the N. crassa transcriptome appears to be under clock-control. Clock outputs include genes with products in DNA metabolism, ribosome biogenesis in RNA metabolism, cell cycle, protein metabolism, transport, carbon metabolism, isoprenoid (including carotenoid) biosynthesis, development, and varied signaling processes. Genes under the transcription factor complex WCC ( = WC-1/WC-2) control were resolved into four classes, circadian only (612 genes), light-responsive only (396), both circadian and light-responsive (328), and neither circadian nor light-responsive (987). In each of three cycles of microarray experiments data support that wc-1 and wc-2 are auto-regulated by WCC. Among 11,000 N. crassa genes a total of 295 genes, including a large fraction of phosphatases/kinases, appear to be under the immediate control of the FRQ oscillator as validated by 4 independent microarray experiments. Ribosomal RNA processing and assembly rather than its transcription appears to be under clock control, suggesting a new mechanism for the post-transcriptional control of clock-controlled genes.
doi:10.1371/journal.pone.0003105
PMCID: PMC2518617  PMID: 18769678

Results 1-4 (4)