PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  A variable age of onset segregation model for linkage analysis, with correction for ascertainment, applied to glioma 
Background
We propose a two-step model-based approach, with correction for ascertainment, to linkage analysis of a binary trait with variable age of onset and apply it to a set of multiplex pedigrees segregating for adult glioma.
Methods
First, we fit segregation models by formulating the likelihood for a person to have a bivariate phenotype, affection status and age of onset, along with other covariates, and from these we estimate population trait allele frequencies and penetrance parameters as a function of age (N=281 multiplex glioma pedigrees). Second, the best fitting models are used as trait models in multipoint linkage analysis (N=74 informative multiplex glioma pedigrees). To correct for ascertainment, a prevalence constraint is used in the likelihood of the segregation models for all 281 pedigrees. Then the trait allele frequencies are re-estimated for the pedigree founders of the subset of 74 pedigrees chosen for linkage analysis.
Results
Using the best fitting segregation models in model-based multipoint linkage analysis, we identified two separate peaks on chromosome 17; the first agreed with a region identified by Shete et al. who used model-free affected-only linkage analysis, but with a narrowed peak: and the second agreed with a second region they found but had a larger maximum log of the odds (LOD).
Conclusions/Impact
Our approach has the advantage of not requiring markers to be in linkage equilibrium unless the minor allele frequency is small (markers which tend to be uninformative for linkage), and of using more of the available information for LOD-based linkage analysis.
doi:10.1158/1055-9965.EPI-12-0703
PMCID: PMC3518573  PMID: 22962404
Glioma; model-based linkage; segregation; age of onset; prevalence constraint
2.  A Segregation Analysis of Barrett’s Esophagus and Associated Adenocarcinomas 
Familial aggregation of esophageal adenocarcinomas, esophagogastric junction adenocarcinomas, and their precursor Barrett’s esophagus has been termed Familial Barrett’s Esophagus (FBE). Numerous studies documenting increased familial risk for these diseases raise the hypothesis that there may be an inherited susceptibility to the development of BE and its associated cancers. In this study, using segregation analysis for a binary trait as implemented in S.A.G.E. 6.0.1, we analyzed data on 881singly ascertained pedigrees in order to determine whether FBE is caused by a common environmental or genetic agent and, if genetic, to identify the mode of inheritance of FBE. The inheritance models were compared by likelihood ratio tests and Akaike’s A Information Criterion. Results indicated that random environmental and/or multifactorial components were insufficient to fully explain the familial nature of FBE, but rather there is segregation of a major type transmitted from one generation to the next (p-value < 10−10). An incompletely dominant inheritance model together with a polygenic component fits the data best. For this dominant model, the estimated penetrance of the dominant allele is 0.1005 (95% confidence interval, CI: 0.0587 to 0.1667) and the sporadic rate is 0.0012 (95% CI: 0.0004 to 0.0042), corresponding to a relative risk of 82.53 (95% CI: 28.70 to 237.35), or odds ratio of 91.63 (95% CI: 32.01 to 262.29). This segregation analysis provides epidemiological evidence in support of one or more rare autosomally inherited dominant susceptibility allele(s) in FBE families, and hence motivates linkage analyses.
doi:10.1158/1055-9965.EPI-09-1136
PMCID: PMC2838211  PMID: 20200424
familial esophageal adenocarcinomas; complex segregation analysis; dominant major gene inheritance; polygenic component; likelihood; AIC; unified model

Results 1-2 (2)