PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  S3QL: A distributed domain specific language for controlled semantic integration of life sciences data 
BMC Bioinformatics  2011;12:285.
Background
The value and usefulness of data increases when it is explicitly interlinked with related data. This is the core principle of Linked Data. For life sciences researchers, harnessing the power of Linked Data to improve biological discovery is still challenged by a need to keep pace with rapidly evolving domains and requirements for collaboration and control as well as with the reference semantic web ontologies and standards. Knowledge organization systems (KOSs) can provide an abstraction for publishing biological discoveries as Linked Data without complicating transactions with contextual minutia such as provenance and access control.
We have previously described the Simple Sloppy Semantic Database (S3DB) as an efficient model for creating knowledge organization systems using Linked Data best practices with explicit distinction between domain and instantiation and support for a permission control mechanism that automatically migrates between the two. In this report we present a domain specific language, the S3DB query language (S3QL), to operate on its underlying core model and facilitate management of Linked Data.
Results
Reflecting the data driven nature of our approach, S3QL has been implemented as an application programming interface for S3DB systems hosting biomedical data, and its syntax was subsequently generalized beyond the S3DB core model. This achievement is illustrated with the assembly of an S3QL query to manage entities from the Simple Knowledge Organization System. The illustrative use cases include gastrointestinal clinical trials, genomic characterization of cancer by The Cancer Genome Atlas (TCGA) and molecular epidemiology of infectious diseases.
Conclusions
S3QL was found to provide a convenient mechanism to represent context for interoperation between public and private datasets hosted at biomedical research institutions and linked data formalisms.
doi:10.1186/1471-2105-12-285
PMCID: PMC3155508  PMID: 21756325
S3DB; Linked Data; KOS; RDF; SPARQL; knowledge organization system, policy
2.  RPPAML/RIMS: A metadata format and an information management system for reverse phase protein arrays 
BMC Bioinformatics  2008;9:555.
Background
Reverse Phase Protein Arrays (RPPA) are convenient assay platforms to investigate the presence of biomarkers in tissue lysates. As with other high-throughput technologies, substantial amounts of analytical data are generated. Over 1000 samples may be printed on a single nitrocellulose slide. Up to 100 different proteins may be assessed using immunoperoxidase or immunoflorescence techniques in order to determine relative amounts of protein expression in the samples of interest.
Results
In this report an RPPA Information Management System (RIMS) is described and made available with open source software. In order to implement the proposed system, we propose a metadata format known as reverse phase protein array markup language (RPPAML). RPPAML would enable researchers to describe, document and disseminate RPPA data. The complexity of the data structure needed to describe the results and the graphic tools necessary to visualize them require a software deployment distributed between a client and a server application. This was achieved without sacrificing interoperability between individual deployments through the use of an open source semantic database, S3DB. This data service backbone is available to multiple client side applications that can also access other server side deployments. The RIMS platform was designed to interoperate with other data analysis and data visualization tools such as Cytoscape.
Conclusion
The proposed RPPAML data format hopes to standardize RPPA data. Standardization of data would result in diverse client applications being able to operate on the same set of data. Additionally, having data in a standard format would enable data dissemination and data analysis.
doi:10.1186/1471-2105-9-555
PMCID: PMC2639439  PMID: 19102773
3.  An open-source representation for 2-DE-centric proteomics and support infrastructure for data storage and analysis 
BMC Bioinformatics  2008;9:4.
Background
In spite of two-dimensional gel electrophoresis (2-DE) being an effective and widely used method to screen the proteome, its data standardization has still not matured to the level of microarray genomics data or mass spectrometry approaches. The trend toward identifying encompassing data standards has been expanding from genomics to transcriptomics, and more recently to proteomics. The relative success of genomic and transcriptomic data standardization has enabled the development of central repositories such as GenBank and Gene Expression Omnibus. An equivalent 2-DE-centric data structure would similarly have to include a balance among raw data, basic feature detection results, sufficiency in the description of the experimental context and methods, and an overall structure that facilitates a diversity of usages, from central reposition to local data representation in LIMs systems.
Results & Conclusion
Achieving such a balance can only be accomplished through several iterations involving bioinformaticians, bench molecular biologists, and the manufacturers of the equipment and commercial software from which the data is primarily generated. Such an encompassing data structure is described here, developed as the mature successor to the well established and broadly used earlier version. A public repository, AGML Central, is configured with a suite of tools for the conversion from a variety of popular formats, web-based visualization, and interoperation with other tools and repositories, and is particularly mass-spectrometry oriented with I/O for annotation and data analysis.
doi:10.1186/1471-2105-9-4
PMCID: PMC2231339  PMID: 18179696
4.  An XML standard for the dissemination of annotated 2D gel electrophoresis data complemented with mass spectrometry results 
BMC Bioinformatics  2004;5:9.
Background
Many proteomics initiatives require a seamless bioinformatics integration of a range of analytical steps between sample collection and systems modeling immediately assessable to the participants involved in the process. Proteomics profiling by 2D gel electrophoresis to the putative identification of differentially expressed proteins by comparison of mass spectrometry results with reference databases, includes many components of sample processing, not just analysis and interpretation, are regularly revisited and updated. In order for such updates and dissemination of data, a suitable data structure is needed. However, there are no such data structures currently available for the storing of data for multiple gels generated through a single proteomic experiments in a single XML file. This paper proposes a data structure based on XML standards to fill the void that exists between data generated by proteomics experiments and storing of data.
Results
In order to address the resulting procedural fluidity we have adopted and implemented a data model centered on the concept of annotated gel (AG) as the format for delivery and management of 2D Gel electrophoresis results. An eXtensible Markup Language (XML) schema is proposed to manage, analyze and disseminate annotated 2D Gel electrophoresis results. The structure of AG objects is formally represented using XML, resulting in the definition of the AGML syntax presented here.
Conclusion
The proposed schema accommodates data on the electrophoresis results as well as the mass-spectrometry analysis of selected gel spots. A web-based software library is being developed to handle data storage, analysis and graphic representation. Computational tools described will be made available at . Our development of AGML provides a simple data structure for storing 2D gel electrophoresis data.
doi:10.1186/1471-2105-5-9
PMCID: PMC341449  PMID: 15005801

Results 1-4 (4)