PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Prognostic Significance of Ataxia-Telangiectasia Mutated, DNA-dependent Protein Kinase Catalytic Subunit, and Ku Heterodimeric Regulatory Complex 86-kD Subunit Expression in Patients With Nonsmall Cell Lung Cancer 
Cancer  2008;112(12):2756-2764.
BACKGROUND
The double-strand break (DSB) repair capacity has been implicated in the survival of patients in several cancer types. However, little is known about the prognostic importance of the key DSB repair genes—ataxia-telangiectasia mutated (ATM), DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and the Ku heterodimeric regulatory complex 86-kD subunit (Ku80)—in nonsmall cell lung cancer (NSCLC). To address this issue, the authors determined the messenger RNA (mRNA) expression of these genes in patients NSCLC and assessed their prognostic relevance.
METHODS
mRNA expression levels of ATM, DNA-PKcs, and Ku80 were measured in tumor and adjacent normal tissues from 140 patients with NSCLC by using quantitative real-time polymerase chain reaction analysis. Then, a Cox proportional hazards regression model and Kaplan-Meier plots were used to evaluate the association between the tumor:normal (T/N) expression ratios of the 3 genes and the overall survival rate and duration in patients with NSCLC.
RESULTS
mRNA expression of ATM and DNA-PKcs, but not of Ku80, was significantly higher in tumor tissues than in adjacent normal tissues (P = .003 and P < .001, respectively). The high T/N expression ratios of ATM and DNA-PKcs were associated significantly with a 1.82-fold increased risk of death (95% confidence interval, 1.05–2.70) and a 2.13-fold increased risk of death (95% confidence interval, 1.21–3.76), respectively. However, no significant association with risk was observed for Ku80. Kaplan-Meier analyses revealed that patients with high T/N expression ratios of ATM or DNA-PKcs had notably shorter median survival than patients with low ratios.
CONCLUSIONS
The current findings suggested that the T/N expression ratios of ATM and DNA-PKcs may be useful for identifying NSCLC patients with a poor prognosis who may benefit from more aggressive therapy.
doi:10.1002/cncr.23533
PMCID: PMC3384998  PMID: 18457328
DNA repair; DNA double-strand break; nonsmall cell lung cancer; prognosis
2.  MEDIATING EFFECTS OF SMOKING AND CHRONIC OBSTRUCTIVE AIRWAY DISEASE ON THE RELATIONSHIP BETWEEN THE CHRNA5-A3 GENETIC LOCUS AND LUNG CANCER RISK 
Cancer  2010;116(14):3458-3462.
Background
Recent genome-wide association (GWA) studies of lung cancer have shown that the CHRNA5-A3 region on chromosome 15q24-25.1 is strongly associated with an increased risk of lung cancer and nicotine dependence, and thought to be associated with chronic obstructive airways disease as well. However, it has not been established whether the association between genetic variants and lung cancer risk is a direct one or one mediated by nicotine dependence.
Methods
In this paper we applied a rigorous statistical approach, mediation analysis, to examine the mediating effect of smoking behavior and self-reported physician-diagnosed emphysema (chronic obstructive pulmonary disease [COPD]) on the relationship between the CHRNA5-A3 region genetic variant rs1051730 and the risk of lung cancer.
Results
Our results showed that rs1051730 is directly associated with lung cancer risk, but that it is also associated with lung cancer risk through its effect on both smoking behavior and COPD. Furthermore, we showed that COPD is a mediating phenotype that explains part of the effect of smoking behavior on lung cancer. Our results also suggested that smoking behavior is a mediator of the relationship between rs1051730 and COPD risk.
Conclusions
Smoking behavior and COPD are mediators of the association between the SNP rs1051730 and the risk of lung cancer. Also, COPD is a mediator of the association between smoking behavior and lung cancer. Finally, smoking behavior also has mediating effects on the association between the SNP and COPD.
doi:10.1002/cncr.25085
PMCID: PMC3073819  PMID: 20564069
Lung Cancer; COPD; Mediation analysis; smoking behavior; genetic variants
3.  Genetic Variations in Cell Cycle Pathway and the Risk of Oral Premalignant Lesions 
Cancer  2008;113(9):2488-2495.
Background:
Cell-cycle checkpoint regulates cell cycle progression and proliferation. Alterations in cell-cycle control mechanisms are linked to tumorigenesis.
Methods:
This case-control study included 147 cases and 147 controls. We used a pathway-based approach to assess the association between 10 potential functional single-nucleotide polymorphisms from seven cell-cycle control genes and the risk of oral premalignant lesions (OPLs). We also used classification and regression tree analysis to examine high-order gene-gene and gene-smoking interactions.
Results:
Compared with the homozygous wild-type GG genotype of CCND1 P241P, individuals with the AG genotype exhibited an increased risk of OPL (odds ratio, 1.58; 95% confidence interval, 0.89–2.83), and carriers of the AA genotype had a significantly increased risk of OPL (odds ratio, 2.75; 95% confidence interval, 1.33–5.71), with risk increasing significantly with the increasing number of variant alleles (P = 0.006). The risk of OPL increased significantly as the number of unfavorable genotypes in the pathway increased (P = 0.002). The final decision tree in the CART analysis contained five terminal nodes. Compared with the never smokers (the lowest risk group), the odds ratios for terminal nodes 2 through 5 ranged from 1.21 to 5.40.
Conclusions:
Our results illustrated the advantage of using a pathway-based approach for analyzing gene-gene and gene-smoking interactions. Specifically, we showed that genetic polymorphisms in cell-cycle control pathway genes may contribute to the risk of OPL.
doi:10.1002/cncr.23854
PMCID: PMC2577230  PMID: 18823025
Cell-cycle pathway; SNP; Oral premalignant lesion; CART

Results 1-3 (3)