PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Variants in inflammation genes are implicated in risk of lung cancer in never smokers exposed to second-hand smoke 
Cancer discovery  2011;1(5):420-429.
Lung cancer in lifetime never smokers is distinct from that in smokers, but the role of separate or overlapping carcinogenic pathways has not been explored. We therefore evaluated a comprehensive panel of 11,737 SNPs in inflammatory-pathway genes in a discovery phase (451 lung cancer cases, 508 controls from Texas). SNPs that were significant were evaluated in a second external population (303 cases, 311 controls from the Mayo Clinic). An intronic SNP in the ACVR1B gene, rs12809597, was replicated with significance and restricted to those reporting adult exposure to environmental tobacco smoke Another promising candidate was a SNP in NR4A1, although the replication OR did not achieve statistical significance. ACVR1B belongs to the TGFR-β superfamily, contributing to resolution of inflammation and initiation of airway remodeling. An inflammatory microenvironment, (second hand smoking, asthma, or hay fever) is necessary for risk from these gene variants to be expressed. These findings require further replication, followed by targeted resequencing, and functional validation.
doi:10.1158/2159-8290.CD-11-0080
PMCID: PMC3919666  PMID: 22586632
lung cancer; never smokers; inflammation genes; sidestream exposure
2.  Increased risk of lung cancer in individuals with a family history of the disease: A pooled analysis from the International Lung Cancer Consortium 
Background and Methods
Familial aggregation of lung cancer exists after accounting for cigarette smoking. However, the extent to which family history affects risk by smoking status, histology, relative type and ethnicity is not well described. This pooled analysis included 24 case-control studies in the International Lung Cancer Consortium. Each study collected age of onset/interview, gender, race/ethnicity, cigarette smoking, histology and first-degree family history of lung cancer. Data from 24,380 lung cancer cases and 23,305 healthy controls were analyzed. Unconditional logistic regression models and generalized estimating equations were used to estimate odds ratios and 95% confidence intervals.
Results
Individuals with a first-degree relative with lung cancer had a 1.51-fold increase in risk of lung cancer, after adjustment for smoking and other potential confounders(95% CI: 1.39, 1.63). The association was strongest for those with a family history in a sibling, after adjustment (OR=1.82, 95% CI: 1.62, 2.05). No modifying effect by histologic type was found. Never smokers showed a lower association with positive familial history of lung cancer (OR=1.25, 95% CI: 1.03, 1.52), slightly stronger for those with an affected sibling (OR=1.44, 95% CI: 1.07, 1.93), after adjustment.
Conclusions
The increased risk among never smokers and similar magnitudes of the effect of family history on lung cancer risk across histological types suggests familial aggregation of lung cancer is independent of those associated with cigarette smoking. While the role of genetic variation in the etiology of lung cancer remains to be fully characterized, family history assessment is immediately available and those with a positive history represent a higher risk group.
doi:10.1016/j.ejca.2012.01.038
PMCID: PMC3445438  PMID: 22436981
3.  Genome-Wide Association Study of Survival in Non–Small Cell Lung Cancer Patients Receiving Platinum-Based Chemotherapy 
Background
Interindividual variation in genetic background may influence the response to chemotherapy and overall survival for patients with advanced-stage non–small cell lung cancer (NSCLC).
Methods
To identify genetic variants associated with poor overall survival in these patients, we conducted a genome-wide scan of 307 260 single-nucleotide polymorphisms (SNPs) in 327 advanced-stage NSCLC patients who received platinum-based chemotherapy with or without radiation at the University of Texas MD Anderson Cancer Center (the discovery population). A fast-track replication was performed for 315 patients from the Mayo Clinic followed by a second validation at the University of Pittsburgh in 420 patients enrolled in the Spanish Lung Cancer Group PLATAX clinical trial. A pooled analysis combining the Mayo Clinic and PLATAX populations or all three populations was also used to validate the results. We assessed the association of each SNP with overall survival by multivariable Cox proportional hazard regression analysis. All statistical tests were two-sided.
Results
SNP rs1878022 in the chemokine-like receptor 1 (CMKLR1) was statistically significantly associated with poor overall survival in the MD Anderson discovery population (hazard ratio [HR] of death = 1.59, 95% confidence interval [CI] = 1.32 to 1.92, P = 1.42 × 10−6), in the PLATAX clinical trial (HR of death = 1.23, 95% CI = 1.00 to 1.51, P = .05), in the pooled Mayo Clinic and PLATAX validation (HR of death = 1.22, 95% CI = 1.06 to 1.40, P = .005), and in pooled analysis of all three populations (HR of death = 1.33, 95% CI = 1.19 to 1.48, P = 5.13 × 10−7). Carrying a variant genotype of rs10937823 was associated with decreased overall survival (HR of death = 1.82, 95% CI = 1.42 to 2.33, P = 1.73 × 10−6) in the pooled MD Anderson and Mayo Clinic populations but not in the PLATAX trial patient population (HR of death = 0.96, 95% CI = 0.69 to 1.35).
Conclusion
These results have the potential to contribute to the future development of personalized chemotherapy treatments for individual NSCLC patients.
doi:10.1093/jnci/djr075
PMCID: PMC3096796  PMID: 21483023
4.  Replication of Lung Cancer Susceptibility Loci at Chromosomes 15q25, 5p15, and 6p21: A Pooled Analysis From the International Lung Cancer Consortium 
Background
Genome-wide association studies have identified three chromosomal regions at 15q25, 5p15, and 6p21 as being associated with the risk of lung cancer. To confirm these associations in independent studies and investigate heterogeneity of these associations within specific subgroups, we conducted a coordinated genotyping study within the International Lung Cancer Consortium based on independent studies that were not included in previous genome-wide association studies.
Methods
Genotype data for single-nucleotide polymorphisms at chromosomes 15q25 (rs16969968, rs8034191), 5p15 (rs2736100, rs402710), and 6p21 (rs2256543, rs4324798) from 21 case–control studies for 11 645 lung cancer case patients and 14 954 control subjects, of whom 85% were white and 15% were Asian, were pooled. Associations between the variants and the risk of lung cancer were estimated by logistic regression models. All statistical tests were two-sided.
Results
Associations between 15q25 and the risk of lung cancer were replicated in white ever-smokers (rs16969968: odds ratio [OR] = 1.26, 95% confidence interval [CI] = 1.21 to 1.32, Ptrend = 2 × 10−26), and this association was stronger for those diagnosed at younger ages. There was no association in never-smokers or in Asians between either of the 15q25 variants and the risk of lung cancer. For the chromosome 5p15 region, we confirmed statistically significant associations in whites for both rs2736100 (OR = 1.15, 95% CI = 1.10 to 1.20, Ptrend = 1 × 10−10) and rs402710 (OR = 1.14, 95% CI = 1.09 to 1.19, Ptrend = 5 × 10−8) and identified similar associations in Asians (rs2736100: OR = 1.23, 95% CI = 1.12 to 1.35, Ptrend = 2 × 10−5; rs402710: OR = 1.15, 95% CI = 1.04 to 1.27, Ptrend = .007). The associations between the 5p15 variants and lung cancer differed by histology; odds ratios for rs2736100 were highest in adenocarcinoma and for rs402710 were highest in adenocarcinoma and squamous cell carcinomas. This pattern was observed in both ethnic groups. Neither of the two variants on chromosome 6p21 was associated with the risk of lung cancer.
Conclusions
In this international genetic association study of lung cancer, previous associations found in white populations were replicated and new associations were identified in Asian populations. Future genetic studies of lung cancer should include detailed stratification by histology.
doi:10.1093/jnci/djq178
PMCID: PMC2897877  PMID: 20548021
5.  Genetic variants and risk of lung cancer in never smokers: a genome-wide association study 
The lancet oncology  2010;11(4):321-330.
Summary
Background
Lung cancer in individuals who have never smoked tobacco products is an increasing medical and public-health issue. We aimed to unravel the genetic basis of lung cancer in never smokers.
Methods
We did a four-stage investigation. First, a genome-wide association study of single nucleotide polymorphisms (SNPs) was done with 754 never smokers (377 matched case-control pairs at Mayo Clinic, Rochester, MN, USA). Second, the top candidate SNPs from the first study were validated in two independent studies among 735 (MD Anderson Cancer Center, Houston, TX, USA) and 253 (Harvard University, Boston, MA, USA) never smokers. Third, further replication of the top SNP was done in 530 never smokers (UCLA, Los Angeles, CA, USA). Fourth, expression quantitative trait loci (eQTL) and gene-expression differences were analysed to further elucidate the causal relation between the validated SNPs and the risk of lung cancer in never smokers.
Findings
44 top candidate SNPs were identified that might alter the risk of lung cancer in never smokers. rs2352028 at chromosome 13q31.3 was subsequently replicated with an additive genetic model in the four independent studies, with a combined odds ratio of 1·46 (95% CI 1·26–1·70, p=5·94×10−6). A cis eQTL analysis showed there was a strong correlation between genotypes of the replicated SNPs and the transcription level of the gene GPC5 in normal lung tissues (p=1·96×10−4), with the high-risk allele linked with lower expression. Additionally, the transcription level of GPC5 in normal lung tissue was twice that detected in matched lung adenocarcinoma tissue (p=6·75×10−11).
Interpretation
Genetic variants at 13q31.3 alter the expression of GPC5, and are associated with susceptibility to lung cancer in never smokers. Downregulation of GPC5 might contribute to the development of lung cancer in never smokers.
doi:10.1016/S1470-2045(10)70042-5
PMCID: PMC2945218  PMID: 20304703
6.  International Lung Cancer Consortium: Pooled Analysis of Sequence Variants in DNA Repair and Cell Cycle Pathways 
Background
The International Lung Cancer Consortium was established in 2004. To clarify the role of DNA repair genes in lung cancer susceptibility, we conducted a pooled analysis of genetic variants in DNA repair pathways, whose associations have been investigated by at least 3 individual studies.
Methods
Data from 14 studies were pooled for 18 sequence variants in 12 DNA repair genes, including APEX1, OGG1, XRCC1, XRCC2, XRCC3, ERCC1, XPD, XPF, XPG, XPA, MGMT, and TP53. The total number of subjects included in the analysis for each variant ranged from 2,073 to 13,955 subjects.
Results
Four of the variants were found to be weakly associated with lung cancer risk with borderline significance: these were XRCC3 T241M [heterozygote odds ratio (OR), 0.89; 95% confidence interval (95% CI), 0.79–0.99 and homozygote OR, 0.84; 95% CI, 0.71–1.00] based on 3,467 cases and 5,021 controls from 8 studies, XPD K751Q (heterozygote OR, 0.99; 95% CI, 0.89–1.10 and homozygote OR, 1.19; 95% CI, 1.02–1.39) based on 6,463 cases and 6,603 controls from 9 studies, and TP53 R72P (heterozygote OR, 1.14; 95% CI, 1.00–1.29 and homozygote OR, 1.20; 95% CI, 1.02–1.42) based on 3,610 cases and 5,293 controls from 6 studies. OGG1 S326C homozygote was suggested to be associated with lung cancer risk in Caucasians (homozygote OR, 1.34; 95% CI, 1.01–1.79) based on 2,569 cases and 4,178 controls from 4 studies but not in Asians. The other 14 variants did not exhibit main effects on lung cancer risk.
Discussion
In addition to data pooling, future priorities of International Lung Cancer Consortium include coordinated genotyping and multistage validation for ongoing genome-wide association studies.
doi:10.1158/1055-9965.EPI-08-0411
PMCID: PMC2756735  PMID: 18990748
7.  Familial Aggregation of Common Sequence Variants on 15q24-25.1 in Lung Cancer 
Three recent genome-wide association studies identified associations between markers in the chromosomal region 15q24-25.1 and the risk of lung cancer. We conducted a genome-wide association analysis to investigate associations between single-nucleotide polymorphisms (SNPs) and the risk of lung cancer, in which we used blood DNA from 194 case patients with familial lung cancer and 219 cancer-free control subjects. We identified associations between common sequence variants at 15q24-25.1 (that spanned LOC123688 [a hypothetical gene], PSMA4, CHRNA3, CHRNA5, and CHRNB4) and lung cancer. The risk of lung cancer was more than fivefold higher among those subjects who had both a family history of lung cancer and two copies of high-risk alleles rs8034191 (odds ratio [OR] = 7.20, 95% confidence interval [CI] = 2.21 to 23.37) or rs1051730 (OR = 5.67, CI = 2.21 to 14.60, both of which were located in the 15q24-25.1 locus, than among control subjects. Thus, further research to elucidate causal variants in the 15q24-25.1 locus that are associated with lung cancer is warranted.
doi:10.1093/jnci/djn268
PMCID: PMC2538550  PMID: 18780872

Results 1-7 (7)