PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None
Journals
Year of Publication
1.  Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer 
Wang, Yufei | McKay, James D. | Rafnar, Thorunn | Wang, Zhaoming | Timofeeva, Maria | Broderick, Peter | Zong, Xuchen | Laplana, Marina | Wei, Yongyue | Han, Younghun | Lloyd, Amy | Delahaye-Sourdeix, Manon | Chubb, Daniel | Gaborieau, Valerie | Wheeler, William | Chatterjee, Nilanjan | Thorleifsson, Gudmar | Sulem, Patrick | Liu, Geoffrey | Kaaks, Rudolf | Henrion, Marc | Kinnersley, Ben | Vallée, Maxime | LeCalvez-Kelm, Florence | Stevens, Victoria L. | Gapstur, Susan M. | Chen, Wei V. | Zaridze, David | Szeszenia-Dabrowska, Neonilia | Lissowska, Jolanta | Rudnai, Peter | Fabianova, Eleonora | Mates, Dana | Bencko, Vladimir | Foretova, Lenka | Janout, Vladimir | Krokan, Hans E. | Gabrielsen, Maiken Elvestad | Skorpen, Frank | Vatten, Lars | Njølstad, Inger | Chen, Chu | Goodman, Gary | Benhamou, Simone | Vooder, Tonu | Valk, Kristjan | Nelis, Mari | Metspalu, Andres | Lener, Marcin | Lubiński, Jan | Johansson, Mattias | Vineis, Paolo | Agudo, Antonio | Clavel-Chapelon, Francoise | Bueno-de-Mesquita, H.Bas | Trichopoulos, Dimitrios | Khaw, Kay-Tee | Johansson, Mikael | Weiderpass, Elisabete | Tjønneland, Anne | Riboli, Elio | Lathrop, Mark | Scelo, Ghislaine | Albanes, Demetrius | Caporaso, Neil E. | Ye, Yuanqing | Gu, Jian | Wu, Xifeng | Spitz, Margaret R. | Dienemann, Hendrik | Rosenberger, Albert | Su, Li | Matakidou, Athena | Eisen, Timothy | Stefansson, Kari | Risch, Angela | Chanock, Stephen J. | Christiani, David C. | Hung, Rayjean J. | Brennan, Paul | Landi, Maria Teresa | Houlston, Richard S. | Amos, Christopher I.
Nature genetics  2014;46(7):736-741.
We conducted imputation to the 1000 Genomes Project of four genome-wide association studies of lung cancer in populations of European ancestry (11,348 cases and 15,861 controls) and genotyped an additional 10,246 cases and 38,295 controls for follow-up. We identified large-effect genome-wide associations for squamous lung cancer with the rare variants of BRCA2-K3326X (rs11571833; odds ratio [OR]=2.47, P=4.74×10−20) and of CHEK2-I157T (rs17879961; OR=0.38 P=1.27×10−13). We also showed an association between common variation at 3q28 (TP63; rs13314271; OR=1.13, P=7.22×10−10) and lung adenocarcinoma previously only reported in Asians. These findings provide further evidence for inherited genetic susceptibility to lung cancer and its biological basis. Additionally, our analysis demonstrates that imputation can identify rare disease-causing variants having substantive effects on cancer risk from pre-existing GWAS data.
doi:10.1038/ng.3002
PMCID: PMC4074058  PMID: 24880342
2.  Inherited variation at chromosome 12p13.33 including RAD52 influences squamous cell lung carcinoma risk 
Cancer Discovery  2011;2(2):131-139.
While lung cancer is largely caused by tobacco smoking, inherited genetic factors play a role in its etiology. Genome-wide association studies (GWAS) in Europeans have robustly demonstrated only three polymorphic variations influencing lung cancer risk. Tumor heterogeneity may have hampered the detection of association signal when all lung cancer subtypes were analyzed together. In a GWAS of 5,355 European smoking lung cancer cases and 4,344 smoking controls, we conducted a pathway-based analysis in lung cancer histologic subtypes with 19,082 SNPs mapping to 917 genes in the HuGE-defined “inflammation” pathway. We identified a susceptibility locus for squamous cell lung carcinoma (SQ) at 12p13.33 (RAD52, rs6489769), and replicated the association in three independent samples totaling 3,359 SQ cases and 9,100 controls (odds ratio=1.20, Pcombined=2.3×10−8).
Significance
The combination of pathway-based approaches and information on disease specific subtypes can improve the identification of cancer susceptibility loci in heterogeneous diseases.
doi:10.1158/2159-8290.CD-11-0246
PMCID: PMC3354721  PMID: 22585858
Lung cancer; histology; squamous cell carcinoma; pathway analysis; RAD52
3.  Association of a novel functional promoter variant (rs2075533 C>T) in the apoptosis gene TNFSF8 with risk of lung cancer—a finding from Texas lung cancer genome-wide association study 
Carcinogenesis  2011;32(4):507-515.
Published genome-wide association studies (GWASs) have identified few variants in the known biological pathways involved in lung cancer etiology. To mine the possibly hidden causal single nucleotide polymorphisms (SNPs), we explored all SNPs in the extrinsic apoptosis pathway from our published GWAS dataset for 1154 lung cancer cases and 1137 cancer-free controls. In an initial association analysis of 611 tagSNPs in 41 apoptosis-related genes, we identified only 10 tagSNPs associated with lung cancer risk with a P value <10−2, including four tagSNPs in DAPK1 and three tagSNPs in TNFSF8. Unlike DAPK1 SNPs, TNFSF8 rs2181033 tagged other four predicted functional but untyped SNPs (rs776576, rs776577, rs31813148 and rs2075533) in the promoter region. Therefore, we further tested binding affinity of these four SNPs by performing the electrophoretic mobility shift assay. We found that only rs2075533T allele modified levels of nuclear proteins bound to DNA, leading to significantly decreased expression of luciferase reporter constructs by 5- to –10-fold in H1299, HeLa and HCT116 cell lines compared with the C allele. We also performed a replication study of the untyped rs2075533 in an independent Texas population but did not confirm the protective effect. We further performed a mini meta-analysis for SNPs of TNFSF8 obtained from other four published lung cancer GWASs with 12  214 cases and 47  721 controls, and we found that only rs3181366 (r2 = 0.69 with the untyped rs2075533) was associated to lung cancer risk (P = 0.008). Our findings suggest a possible role of novel TNFSF8 variants in susceptibility to lung cancer.
doi:10.1093/carcin/bgr014
PMCID: PMC3066422  PMID: 21292647
5.  Deciphering the impact of common genetic variation on lung cancer risk: A genome-wide association study 
Cancer research  2009;69(16):6633-6641.
To explore the impact of common variation on the risk of developing lung cancer we conducted a two-phase genome-wide association (GWA) study. In Phase 1, we compared the genotypes of 511,919 tagging single nucleotide polymorphisms (tagSNPs) in 1,952 cases and 1,438 controls; in Phase 2, 30,568 SNPs were genotyped in 2,465 cases and 3,005 controls. SNP selection was based on best supported P-values from Phase 1 and two other GWA studies of lung cancer. In the combined analysis of Phases 1 and 2, the strongest associations identified were defined by SNPs mapping to 15q25.1 (rs12914385; P = 3.19 × 10−16), 5p15.33 (rs4975616; P = 6.66 × 10−7), and 6p21.33 (rs3117582; P = 9.13 × 10−7). Variation at 15q25.1, but not 5p15.33 or 6p21.33, was strongly associated with smoking behaviour with risk alleles correlated to higher consumption. Variation at 5p15.33 was shown to significantly influence induction of lung cancer histology. Pooling data from the four series provided 21,620 genotypes for 7,560 cases and 8,205 controls. A meta-analysis provided increased support that variation at 15q25.1 (rs8034191; P = 3.24 × 10−26), 5p15.33 (rs4975616; P = 2.99 × 10−9), and 6p21.33 (rs3117582; P = 4.46 × 10−10) influences lung cancer risk. The next best-supported associations were attained at 15q15.2 (rs748404: P = 1.08 × 10−6) and 10q23.31 (rs1926203; P = 1.28 × 10−6). These data indicate few common variants account for 1% of the excess familial risk underscoring the necessity of having additional large sample series for gene discovery.
doi:10.1158/0008-5472.CAN-09-0680
PMCID: PMC2754318  PMID: 19654303
lung cancer; genome-wide association
6.  International Lung Cancer Consortium: Pooled Analysis of Sequence Variants in DNA Repair and Cell Cycle Pathways 
Background
The International Lung Cancer Consortium was established in 2004. To clarify the role of DNA repair genes in lung cancer susceptibility, we conducted a pooled analysis of genetic variants in DNA repair pathways, whose associations have been investigated by at least 3 individual studies.
Methods
Data from 14 studies were pooled for 18 sequence variants in 12 DNA repair genes, including APEX1, OGG1, XRCC1, XRCC2, XRCC3, ERCC1, XPD, XPF, XPG, XPA, MGMT, and TP53. The total number of subjects included in the analysis for each variant ranged from 2,073 to 13,955 subjects.
Results
Four of the variants were found to be weakly associated with lung cancer risk with borderline significance: these were XRCC3 T241M [heterozygote odds ratio (OR), 0.89; 95% confidence interval (95% CI), 0.79–0.99 and homozygote OR, 0.84; 95% CI, 0.71–1.00] based on 3,467 cases and 5,021 controls from 8 studies, XPD K751Q (heterozygote OR, 0.99; 95% CI, 0.89–1.10 and homozygote OR, 1.19; 95% CI, 1.02–1.39) based on 6,463 cases and 6,603 controls from 9 studies, and TP53 R72P (heterozygote OR, 1.14; 95% CI, 1.00–1.29 and homozygote OR, 1.20; 95% CI, 1.02–1.42) based on 3,610 cases and 5,293 controls from 6 studies. OGG1 S326C homozygote was suggested to be associated with lung cancer risk in Caucasians (homozygote OR, 1.34; 95% CI, 1.01–1.79) based on 2,569 cases and 4,178 controls from 4 studies but not in Asians. The other 14 variants did not exhibit main effects on lung cancer risk.
Discussion
In addition to data pooling, future priorities of International Lung Cancer Consortium include coordinated genotyping and multistage validation for ongoing genome-wide association studies.
doi:10.1158/1055-9965.EPI-08-0411
PMCID: PMC2756735  PMID: 18990748
7.  Familial Aggregation of Common Sequence Variants on 15q24-25.1 in Lung Cancer 
Three recent genome-wide association studies identified associations between markers in the chromosomal region 15q24-25.1 and the risk of lung cancer. We conducted a genome-wide association analysis to investigate associations between single-nucleotide polymorphisms (SNPs) and the risk of lung cancer, in which we used blood DNA from 194 case patients with familial lung cancer and 219 cancer-free control subjects. We identified associations between common sequence variants at 15q24-25.1 (that spanned LOC123688 [a hypothetical gene], PSMA4, CHRNA3, CHRNA5, and CHRNB4) and lung cancer. The risk of lung cancer was more than fivefold higher among those subjects who had both a family history of lung cancer and two copies of high-risk alleles rs8034191 (odds ratio [OR] = 7.20, 95% confidence interval [CI] = 2.21 to 23.37) or rs1051730 (OR = 5.67, CI = 2.21 to 14.60, both of which were located in the 15q24-25.1 locus, than among control subjects. Thus, further research to elucidate causal variants in the 15q24-25.1 locus that are associated with lung cancer is warranted.
doi:10.1093/jnci/djn268
PMCID: PMC2538550  PMID: 18780872

Results 1-7 (7)