PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None
Journals
author:("Singh, ladji")
1.  Population Genetic Structure in Indian Austroasiatic Speakers: The Role of Landscape Barriers and Sex-Specific Admixture 
Molecular biology and evolution  2010;28(2):1013-1024.
The geographic origin and time of dispersal of Austroasiatic (AA) speakers, presently settled in south and southeast Asia, remains disputed. Two rival hypotheses, both assuming a demic component to the language dispersal, have been proposed. The first of these places the origin of Austroasiatic speakers in southeast Asia with a later dispersal to south Asia during the Neolithic, whereas the second hypothesis advocates pre-Neolithic origins and dispersal of this language family from south Asia. To test the two alternative models, this study combines the analysis of uniparentally inherited markers with 610,000 common single nucleotide polymorphism loci from the nuclear genome. Indian AA speakers have high frequencies of Y chromosome haplogroup O2a; our results show that this haplogroup has significantly higher diversity and coalescent time (17–28 thousand years ago) in southeast Asia, strongly supporting the first of the two hypotheses. Nevertheless, the results of principal component and “structure-like” analyses on autosomal loci also show that the population history of AA speakers in India is more complex, being characterized by two ancestral components—one represented in the pattern of Y chromosomal and EDAR results and the other by mitochondrial DNA diversity and genomic structure. We propose that AA speakers in India today are derived from dispersal from southeast Asia, followed by extensive sex-specific admixture with local Indian populations.
doi:10.1093/molbev/msq288
PMCID: PMC3355372  PMID: 20978040
Austroasiatic; mtDNA; Y chromosome; autosomes; admixture
3.  The Influence of Natural Barriers in Shaping the Genetic Structure of Maharashtra Populations 
PLoS ONE  2010;5(12):e15283.
Background
The geographical position of Maharashtra state makes it rather essential to study the dispersal of modern humans in South Asia. Several hypotheses have been proposed to explain the cultural, linguistic and geographical affinity of the populations living in Maharashtra state with other South Asian populations. The genetic origin of populations living in this state is poorly understood and hitherto been described at low molecular resolution level.
Methodology/Principal Findings
To address this issue, we have analyzed the mitochondrial DNA (mtDNA) of 185 individuals and NRY (non-recombining region of Y chromosome) of 98 individuals belonging to two major tribal populations of Maharashtra, and compared their molecular variations with that of 54 South Asian contemporary populations of adjacent states. Inter and intra population comparisons reveal that the maternal gene pool of Maharashtra state populations is composed of mainly South Asian haplogroups with traces of east and west Eurasian haplogroups, while the paternal haplogroups comprise the South Asian as well as signature of near eastern specific haplogroup J2a.
Conclusions/Significance
Our analysis suggests that Indian populations, including Maharashtra state, are largely derived from Paleolithic ancient settlers; however, a more recent (∼10 Ky older) detectable paternal gene flow from west Asia is well reflected in the present study. These findings reveal movement of populations to Maharashtra through the western coast rather than mainland where Western Ghats-Vindhya Mountains and Narmada-Tapti rivers might have acted as a natural barrier. Comparing the Maharastrian populations with other South Asian populations reveals that they have a closer affinity with the South Indian than with the Central Indian populations.
doi:10.1371/journal.pone.0015283
PMCID: PMC3004917  PMID: 21187967
5.  Role of Progesterone Receptor Polymorphisms in the Recurrent Spontaneous Abortions: Indian Case 
PLoS ONE  2010;5(1):e8712.
Background
We attempt to ascertain if the 3 linked single nucleotide polymorphisms (SNPs) of the Progesterone Receptor (PR) gene (exon 1: G 1031 C; S344T, exon 4: G 1978 T; L660V and exon 5: C 2310 T; H770H) and the PROGINS insertion in the intron G, between exons 7 and 8, are associated with Recurrent Spontaneous Abortion (RSA) in the Indian population.
Methodology/Principal Findings
A total of 143 women with RSA and 150 controls were sequenced for all the 8 exons looking for the above 3 linked SNPs of the PR gene earlier implicated in the RSA, as well as for any new SNPs that may be possibly found in the Indian population. PROGINS insertion was screened by electrophoresis. We did not find any new mutations, not observed earlier, in our population. Further, we did not find significant role of the *2 allele (representing the mutant allele at the three SNP loci) or the T2 allele (PROGINS insertion) in the manifestation of RSA. We also did not find an LD pattern between each of the 3 SNPs and the PROGINS insertion.
Conclusions/Significance
The results suggest that the PR gene mutations may not play any exclusive role in the manifestation of RSA, and instead, given significantly higher frequency of the *2 allele among the normal women, we surmise if it does not really confer a protective role among the Indian populations, albeit further studies are required in the heterogeneous populations of this region before making any conclusive statement.
doi:10.1371/journal.pone.0008712
PMCID: PMC2806831  PMID: 20090851
6.  Paternally derived translocation t(8;18)(q22.1;q22)pat associated in a patient with developmental delay: Case report and review 
The common cause of mental impairment and the wide range of physical abnormalities is balanced chromosome rearrangement. As such, it is difficult to interpret, posing as a diagnostic challenge in human development. We present a unique familial case report with the paternally inherited autosomal-balanced reciprocal translocation involving chromosomal regions 8q and 18q. The etiology of the translocation, i.e. 46,XX,t(8;18)(q22.1;q22) was detected by conventional high-resolution Giemsa–Trypsin–Giemsa-banding and fluorescence in situ hybridization techniques. The father was found to be the carrier of the chromosome defect and also the same was observed in the first female child referred with a history of delayed milestone development. However, the second female child showed normal 46, XX karyotype. This is the first report of reciprocal translocation involving 8q and 18q associated with the delayed milestone development. The reason likely may be due to the rearrangement of genetic material at these breakpoints having a crucial relationship and thus manifesting developmental delay in the progeny. Accordingly, this paper also shows genetic counseling discussion for the cause.
doi:10.4103/1817-1745.66686
PMCID: PMC2964802  PMID: 21042514
Balanced reciprocal translocation; chromosomes 8 and 18; delayed milestones; Giemsa–Trypsin–Giemsa banding and FISH; translocation carrier

Results 1-6 (6)