PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
author:("Singh, ladji")
1.  The Phylogeography of Y-Chromosome Haplogroup H1a1a-M82 Reveals the Likely Indian Origin of the European Romani Populations 
PLoS ONE  2012;7(11):e48477.
Linguistic and genetic studies on Roma populations inhabited in Europe have unequivocally traced these populations to the Indian subcontinent. However, the exact parental population group and time of the out-of-India dispersal have remained disputed. In the absence of archaeological records and with only scanty historical documentation of the Roma, comparative linguistic studies were the first to identify their Indian origin. Recently, molecular studies on the basis of disease-causing mutations and haploid DNA markers (i.e. mtDNA and Y-chromosome) supported the linguistic view. The presence of Indian-specific Y-chromosome haplogroup H1a1a-M82 and mtDNA haplogroups M5a1, M18 and M35b among Roma has corroborated that their South Asian origins and later admixture with Near Eastern and European populations. However, previous studies have left unanswered questions about the exact parental population groups in South Asia. Here we present a detailed phylogeographical study of Y-chromosomal haplogroup H1a1a-M82 in a data set of more than 10,000 global samples to discern a more precise ancestral source of European Romani populations. The phylogeographical patterns and diversity estimates indicate an early origin of this haplogroup in the Indian subcontinent and its further expansion to other regions. Tellingly, the short tandem repeat (STR) based network of H1a1a-M82 lineages displayed the closest connection of Romani haplotypes with the traditional scheduled caste and scheduled tribe population groups of northwestern India.
doi:10.1371/journal.pone.0048477
PMCID: PMC3509117  PMID: 23209554
2.  IL-4 Haplotype -590T, -34T and Intron-3 VNTR R2 Is Associated with Reduced Malaria Risk among Ancestral Indian Tribal Populations 
PLoS ONE  2012;7(10):e48136.
Background
Interleukin 4 (IL-4) is an anti-inflammatory cytokine, which regulates balance between TH1 and TH2 immune response, immunoglobulin class switching and humoral immunity. Polymorphisms in this gene have been reported to affect the risk of infectious and autoimmune diseases.
Methods
We have analyzed three regulatory IL-4 polymorphisms; -590C>T, -34C>T and 70 bp intron-3 VNTR, in 4216 individuals; including: (1) 430 ethnically matched case-control groups (173 severe malaria, 101 mild malaria and 156 asymptomatic); (2) 3452 individuals from 76 linguistically and geographically distinct endogamous populations of India, and (3) 334 individuals with different ancestry from outside India (84 Brazilian, 104 Syrian, and 146 Vietnamese).
Results
The -590T, -34T and intron-3 VNTR R2 alleles were found to be associated with reduced malaria risk (P<0.001 for -590C>T and -34C>T, and P = 0.003 for VNTR). These three alleles were in strong LD (r2>0.75) and the TTR2 (-590T, -34T and intron-3 VNTR R2) haplotype appeared to be a susceptibility factor for malaria (P = 0.009, OR = 0.552, 95% CI = 0.356 –0.854). Allele and genotype frequencies differ significantly between caste, nomadic, tribe and ancestral tribal populations (ATP). The distribution of protective haplotype TTR2 was found to be significant (χ23 = 182.95, p-value <0.001), which is highest in ATP (40.5%); intermediate in tribes (33%); and lowest in caste (17.8%) and nomadic (21.6%).
Conclusions
Our study suggests that the IL-4 polymorphisms regulate host susceptibility to malaria and disease progression. TTR2 haplotype, which gives protection against malaria, is high among ATPs. Since they inhabited in isolation and mainly practice hunter-gatherer lifestyles and exposed to various parasites, IL-4 TTR2 haplotype might be under positive selection.
doi:10.1371/journal.pone.0048136
PMCID: PMC3480467  PMID: 23110190
3.  High prevalence of Arginine to Glutamine Substitution at 98, 141 and 162 positions in Troponin I (TNNI3) associated with hypertrophic cardiomyopathy among Indians 
BMC Medical Genetics  2012;13:69.
Background
Troponin I (TNNI3) is the inhibitory subunit of the thin filament regulatory complex Troponin, which confers calcium-sensitivity to striated muscle actomyosin ATPase activity. Mutations (2-7%) in this gene had been reported in hypertrophic cardiomyopathy patients (HCM). However, the frequencies of mutations and associated clinical presentation have not been established in cardiomyopathy patients of Indian origin, hence we have undertaken this study.
Methods
We have sequenced all the exons, including the exon-intron boundaries of TNNI3 gene in 101 hypertrophic cardiomyopathy patients (HCM), along with 160 healthy controls, inhabited in the same geographical region of southern India.
Results
Our study revealed a total of 16 mutations. Interestingly, we have observed Arginine to Glutamine (R to Q) mutation at 3 positions 98, 141 and 162, exclusively in HCM patients with family history of sudden cardiac death. The novel R98Q was observed in a severe hypertrophic obstructive cardiomyopathy patient (HOCM). The R141Q mutation was observed in two familial cases of severe asymmetric septal hypertrophy (ASH++). The R162Q mutation was observed in a ASH++ patient with mean septal thickness of 29 mm, and have also consists of allelic heterogeneity by means of having one more synonymous (E179E) mutation at g.4797: G → A: in the same exon 7, which replaces a very frequent codon (GAG: 85%) with a rare codon (GAA: 14%). Screening for R162Q mutation in all the available family members revealed its presence in 9 individuals, including 7 with allelic heterogeneity (R162Q and E179E) of which 4 were severely affected. We also found 2 novel SNPs, (g.2653; G → A and g.4003 C → T) exclusively in HCM, and in silico analysis of these SNPs have predicted to cause defect in recognition/binding sites for proteins responsible for proper splicing.
Conclusion
Our study has provided valuable information regarding the prevalence of TNNI3 mutations in Indian HCM patients and its risk assessment, these will help in genetic counseling and to adopt appropriate treatment strategies.
doi:10.1186/1471-2350-13-69
PMCID: PMC3495047  PMID: 22876777
TNNI3-Troponin I; Cardiomyopathy; SNPs; HCM; Indians; Mutations
4.  Unique Case Reports Associated with Ovarian Failure: Necessity of Two Intact X Chromosomes 
Case Reports in Genetics  2012;2012:640563.
Premature ovarian failure is defined as the loss of functional follicles below the age of 40 years and the incidence of this abnormality is 0.1% among the 30–40 years age group. Unexplained POF is clinically recognized as amenorrhoea (>6 months) with low level of oestrogen and raised level of Luteinizing Hormone (LH) and Follicle Stimulating Hormone (FSH > 20 IU/l) occurring before the age of 40. It has been studied earlier that chromosomal defects can impair ovarian development and its function. Since there is paucity of data on chromosomal defects in Indian women, an attempt is made to carry out cytogenetic evaluation in patients with ovarian failure. Cytogenetic analysis of women with ovarian defects revealed the chromosome abnormalities to be associated with 14% of the cases analyzed. Interestingly, majority of the abnormalities involved the X-chromosome and we report two unique abnormalities, (46,XXdel(Xq21-22) and q28) and (mos,45XO/46,X+ringX) involving X chromosome in association with ovarian failure. This study revealed novel X chromosome abnormalities associated with ovarian defects and these observations would be helpful in genetic counseling and apart from, infertility clinics using the information to decide suitable strategies to help such patients.
doi:10.1155/2012/640563
PMCID: PMC3447217  PMID: 23074690
5.  Genetic Affinities of the Central Indian Tribal Populations 
PLoS ONE  2012;7(2):e32546.
Background
The central Indian state Madhya Pradesh is often called as ‘heart of India’ and has always been an important region functioning as a trinexus belt for three major language families (Indo-European, Dravidian and Austroasiatic). There are less detailed genetic studies on the populations inhabited in this region. Therefore, this study is an attempt for extensive characterization of genetic ancestries of three tribal populations, namely; Bharia, Bhil and Sahariya, inhabiting this region using haploid and diploid DNA markers.
Methodology/Principal Findings
Mitochondrial DNA analysis showed high diversity, including some of the older sublineages of M haplogroup and prominent R lineages in all the three tribes. Y-chromosomal biallelic markers revealed high frequency of Austroasiatic-specific M95-O2a haplogroup in Bharia and Sahariya, M82-H1a in Bhil and M17-R1a in Bhil and Sahariya. The results obtained by haploid as well as diploid genetic markers revealed strong genetic affinity of Bharia (a Dravidian speaking tribe) with the Austroasiatic (Munda) group. The gene flow from Austroasiatic group is further confirmed by their Y-STRs haplotype sharing analysis, where we determined their founder haplotype from the North Munda speaking tribe, while, autosomal analysis was largely in concordant with the haploid DNA results.
Conclusions/Significance
Bhil exhibited largely Indo-European specific ancestry, while Sahariya and Bharia showed admixed genetic package of Indo-European and Austroasiatic populations. Hence, in a landscape like India, linguistic label doesn't unequivocally follow the genetic footprints.
doi:10.1371/journal.pone.0032546
PMCID: PMC3290590  PMID: 22393414

Results 1-5 (5)