PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
author:("Singh, ladji")
1.  Maternal Footprints of Southeast Asians in North India 
Human heredity  2008;66(1):1-9.
We have analyzed 7137 samples from 125 different caste, tribal and religious groups of India and 99 samples from three populations of Nepal for the length variation in the COII/tRNALys region of mtDNA. Samples showing length variation were subjected to detailed phylogenetic analysis based on HVS-I and informative coding region sequence variation. The overall frequencies of the 9-bp deletion and insertion variants in South Asia were 1.8% and 0.5%, respectively. We have also defined a novel deep-rooting haplogroup M43 and identified the rare haplogroup H14 in Indian populations carrying the 9bp-deletion by complete mtDNA sequencing. Moreover, we redefined haplogroup M6 and dissected it into two well-defined subclades. The presence of haplogroups F1 and B5a in Uttar Pradesh suggests minor maternal contribution from Southeast Asia to Northern India. The occurrence of haplogroup F1 in the Nepalese sample implies that Nepal might have served as a bridge for the flow of eastern lineages to India. The presence of R6 in the Nepalese, on the other hand, suggests that the gene flow between India and Nepal has been reciprocal.
doi:10.1159/000114160
PMCID: PMC2588665  PMID: 18223312
South Asia; 9bp indel; mtDNA; Haplogroup
2.  Phylogeography of mtDNA haplogroup R7 in the Indian peninsula 
Background
Human genetic diversity observed in Indian subcontinent is second only to that of Africa. This implies an early settlement and demographic growth soon after the first 'Out-of-Africa' dispersal of anatomically modern humans in Late Pleistocene. In contrast to this perspective, linguistic diversity in India has been thought to derive from more recent population movements and episodes of contact. With the exception of Dravidian, which origin and relatedness to other language phyla is obscure, all the language families in India can be linked to language families spoken in different regions of Eurasia. Mitochondrial DNA and Y chromosome evidence has supported largely local evolution of the genetic lineages of the majority of Dravidian and Indo-European speaking populations, but there is no consensus yet on the question of whether the Munda (Austro-Asiatic) speaking populations originated in India or derive from a relatively recent migration from further East.
Results
Here, we report the analysis of 35 novel complete mtDNA sequences from India which refine the structure of Indian-specific varieties of haplogroup R. Detailed analysis of haplogroup R7, coupled with a survey of ~12,000 mtDNAs from caste and tribal groups over the entire Indian subcontinent, reveals that one of its more recently derived branches (R7a1), is particularly frequent among Munda-speaking tribal groups. This branch is nested within diverse R7 lineages found among Dravidian and Indo-European speakers of India. We have inferred from this that a subset of Munda-speaking groups have acquired R7 relatively recently. Furthermore, we find that the distribution of R7a1 within the Munda-speakers is largely restricted to one of the sub-branches (Kherwari) of northern Munda languages. This evidence does not support the hypothesis that the Austro-Asiatic speakers are the primary source of the R7 variation. Statistical analyses suggest a significant correlation between genetic variation and geography, rather than between genes and languages.
Conclusion
Our high-resolution phylogeographic study, involving diverse linguistic groups in India, suggests that the high frequency of mtDNA haplogroup R7 among Munda speaking populations of India can be explained best by gene flow from linguistically different populations of Indian subcontinent. The conclusion is based on the observation that among Indo-Europeans, and particularly in Dravidians, the haplogroup is, despite its lower frequency, phylogenetically more divergent, while among the Munda speakers only one sub-clade of R7, i.e. R7a1, can be observed. It is noteworthy that though R7 is autochthonous to India, and arises from the root of hg R, its distribution and phylogeography in India is not uniform. This suggests the more ancient establishment of an autochthonous matrilineal genetic structure, and that isolation in the Pleistocene, lineage loss through drift, and endogamy of prehistoric and historic groups have greatly inhibited genetic homogenization and geographical uniformity.
doi:10.1186/1471-2148-8-227
PMCID: PMC2529308  PMID: 18680585
3.  Maternal Footprints of Southeast Asians in North India 
Human Heredity  2008;66(1):1-9.
We have analyzed 7,137 samples from 125 different caste, tribal and religious groups of India and 99 samples from three populations of Nepal for the length variation in the COII/tRNALys region of mtDNA. Samples showing length variation were subjected to detailed phylogenetic analysis based on HVS-I and informative coding region sequence variation. The overall frequencies of the 9-bp deletion and insertion variants in South Asia were 1.9 and 0.6%, respectively. We have also defined a novel deep-rooting haplogroup M43 and identified the rare haplogroup H14 in Indian populations carrying the 9-bp deletion by complete mtDNA sequencing. Moreover, we redefined haplogroup M6 and dissected it into two well-defined subclades. The presence of haplogroups F1 and B5a in Uttar Pradesh suggests minor maternal contribution from Southeast Asia to Northern India. The occurrence of haplogroup F1 in the Nepalese sample implies that Nepal might have served as a bridge for the flow of eastern lineages to India. The presence of R6 in the Nepalese, on the other hand, suggests that the gene flow between India and Nepal has been reciprocal.
doi:10.1159/000114160
PMCID: PMC2588665  PMID: 18223312
South Asia; 9bp indel; mtDNA; Haplogroup
4.  Genetic affinities among the lower castes and tribal groups of India: inference from Y chromosome and mitochondrial DNA 
BMC Genetics  2006;7:42.
Background
India is a country with enormous social and cultural diversity due to its positioning on the crossroads of many historic and pre-historic human migrations. The hierarchical caste system in the Hindu society dominates the social structure of the Indian populations. The origin of the caste system in India is a matter of debate with many linguists and anthropologists suggesting that it began with the arrival of Indo-European speakers from Central Asia about 3500 years ago. Previous genetic studies based on Indian populations failed to achieve a consensus in this regard. We analysed the Y-chromosome and mitochondrial DNA of three tribal populations of southern India, compared the results with available data from the Indian subcontinent and tried to reconstruct the evolutionary history of Indian caste and tribal populations.
Results
No significant difference was observed in the mitochondrial DNA between Indian tribal and caste populations, except for the presence of a higher frequency of west Eurasian-specific haplogroups in the higher castes, mostly in the north western part of India. On the other hand, the study of the Indian Y lineages revealed distinct distribution patterns among caste and tribal populations. The paternal lineages of Indian lower castes showed significantly closer affinity to the tribal populations than to the upper castes. The frequencies of deep-rooted Y haplogroups such as M89, M52, and M95 were higher in the lower castes and tribes, compared to the upper castes.
Conclusion
The present study suggests that the vast majority (>98%) of the Indian maternal gene pool, consisting of Indio-European and Dravidian speakers, is genetically more or less uniform. Invasions after the late Pleistocene settlement might have been mostly male-mediated. However, Y-SNP data provides compelling genetic evidence for a tribal origin of the lower caste populations in the subcontinent. Lower caste groups might have originated with the hierarchical divisions that arose within the tribal groups with the spread of Neolithic agriculturalists, much earlier than the arrival of Aryan speakers. The Indo-Europeans established themselves as upper castes among this already developed caste-like class structure within the tribes.
doi:10.1186/1471-2156-7-42
PMCID: PMC1569435  PMID: 16893451
5.  In situ origin of deep rooting lineages of mitochondrial Macrohaplogroup 'M' in India 
BMC Genomics  2006;7:151.
Background
Macrohaplogroups 'M' and 'N' have evolved almost in parallel from a founder haplogroup L3. Macrohaplogroup N in India has already been defined in previous studies and recently the macrohaplogroup M among the Indian populations has been characterized. In this study, we attempted to reconstruct and re-evaluate the phylogeny of Macrohaplogroup M, which harbors more than 60% of the Indian mtDNA lineage, and to shed light on the origin of its deep rooting haplogroups.
Results
Using 11 whole mtDNA and 2231 partial coding sequence of Indian M lineage selected from 8670 HVS1 sequences across India, we have reconstructed the tree including Andamanese-specific lineage M31 and calculated the time depth of all the nodes. We defined one novel haplogroup M41, and revised the classification of haplogroups M3, M18, and M31.
Conclusion
Our result indicates that the Indian mtDNA pool consists of several deep rooting lineages of macrohaplogroup 'M' suggesting in-situ origin of these haplogroups in South Asia, most likely in the India. These deep rooting lineages are not language specific and spread over all the language groups in India. Moreover, our reanalysis of the Andamanese-specific lineage M31 suggests population specific two clear-cut subclades (M31a1 and M31a2). Onge and Jarwa share M31a1 branch while M31a2 clade is present in only Great Andamanese individuals. Overall our study supported the one wave, rapid dispersal theory of modern humans along the Asian coast.
doi:10.1186/1471-2164-7-151
PMCID: PMC1534032  PMID: 16776823

Results 1-5 (5)