PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
author:("Singh, ladji")
1.  High prevalence of Arginine to Glutamine Substitution at 98, 141 and 162 positions in Troponin I (TNNI3) associated with hypertrophic cardiomyopathy among Indians 
BMC Medical Genetics  2012;13:69.
Background
Troponin I (TNNI3) is the inhibitory subunit of the thin filament regulatory complex Troponin, which confers calcium-sensitivity to striated muscle actomyosin ATPase activity. Mutations (2-7%) in this gene had been reported in hypertrophic cardiomyopathy patients (HCM). However, the frequencies of mutations and associated clinical presentation have not been established in cardiomyopathy patients of Indian origin, hence we have undertaken this study.
Methods
We have sequenced all the exons, including the exon-intron boundaries of TNNI3 gene in 101 hypertrophic cardiomyopathy patients (HCM), along with 160 healthy controls, inhabited in the same geographical region of southern India.
Results
Our study revealed a total of 16 mutations. Interestingly, we have observed Arginine to Glutamine (R to Q) mutation at 3 positions 98, 141 and 162, exclusively in HCM patients with family history of sudden cardiac death. The novel R98Q was observed in a severe hypertrophic obstructive cardiomyopathy patient (HOCM). The R141Q mutation was observed in two familial cases of severe asymmetric septal hypertrophy (ASH++). The R162Q mutation was observed in a ASH++ patient with mean septal thickness of 29 mm, and have also consists of allelic heterogeneity by means of having one more synonymous (E179E) mutation at g.4797: G → A: in the same exon 7, which replaces a very frequent codon (GAG: 85%) with a rare codon (GAA: 14%). Screening for R162Q mutation in all the available family members revealed its presence in 9 individuals, including 7 with allelic heterogeneity (R162Q and E179E) of which 4 were severely affected. We also found 2 novel SNPs, (g.2653; G → A and g.4003 C → T) exclusively in HCM, and in silico analysis of these SNPs have predicted to cause defect in recognition/binding sites for proteins responsible for proper splicing.
Conclusion
Our study has provided valuable information regarding the prevalence of TNNI3 mutations in Indian HCM patients and its risk assessment, these will help in genetic counseling and to adopt appropriate treatment strategies.
doi:10.1186/1471-2350-13-69
PMCID: PMC3495047  PMID: 22876777
TNNI3-Troponin I; Cardiomyopathy; SNPs; HCM; Indians; Mutations
2.  Unique Case Reports Associated with Ovarian Failure: Necessity of Two Intact X Chromosomes 
Case Reports in Genetics  2012;2012:640563.
Premature ovarian failure is defined as the loss of functional follicles below the age of 40 years and the incidence of this abnormality is 0.1% among the 30–40 years age group. Unexplained POF is clinically recognized as amenorrhoea (>6 months) with low level of oestrogen and raised level of Luteinizing Hormone (LH) and Follicle Stimulating Hormone (FSH > 20 IU/l) occurring before the age of 40. It has been studied earlier that chromosomal defects can impair ovarian development and its function. Since there is paucity of data on chromosomal defects in Indian women, an attempt is made to carry out cytogenetic evaluation in patients with ovarian failure. Cytogenetic analysis of women with ovarian defects revealed the chromosome abnormalities to be associated with 14% of the cases analyzed. Interestingly, majority of the abnormalities involved the X-chromosome and we report two unique abnormalities, (46,XXdel(Xq21-22) and q28) and (mos,45XO/46,X+ringX) involving X chromosome in association with ovarian failure. This study revealed novel X chromosome abnormalities associated with ovarian defects and these observations would be helpful in genetic counseling and apart from, infertility clinics using the information to decide suitable strategies to help such patients.
doi:10.1155/2012/640563
PMCID: PMC3447217  PMID: 23074690
3.  Paternally derived translocation t(8;18)(q22.1;q22)pat associated in a patient with developmental delay: Case report and review 
The common cause of mental impairment and the wide range of physical abnormalities is balanced chromosome rearrangement. As such, it is difficult to interpret, posing as a diagnostic challenge in human development. We present a unique familial case report with the paternally inherited autosomal-balanced reciprocal translocation involving chromosomal regions 8q and 18q. The etiology of the translocation, i.e. 46,XX,t(8;18)(q22.1;q22) was detected by conventional high-resolution Giemsa–Trypsin–Giemsa-banding and fluorescence in situ hybridization techniques. The father was found to be the carrier of the chromosome defect and also the same was observed in the first female child referred with a history of delayed milestone development. However, the second female child showed normal 46, XX karyotype. This is the first report of reciprocal translocation involving 8q and 18q associated with the delayed milestone development. The reason likely may be due to the rearrangement of genetic material at these breakpoints having a crucial relationship and thus manifesting developmental delay in the progeny. Accordingly, this paper also shows genetic counseling discussion for the cause.
doi:10.4103/1817-1745.66686
PMCID: PMC2964802  PMID: 21042514
Balanced reciprocal translocation; chromosomes 8 and 18; delayed milestones; Giemsa–Trypsin–Giemsa banding and FISH; translocation carrier

Results 1-3 (3)