Search tips
Search criteria

Results 1-25 (1016)

Clipboard (0)
Year of Publication
more »
1.  Astrocyte roles in traumatic brain injury 
Experimental neurology  2015;275(0 3):305-315.
Astrocytes sense changes in neural activity and extracellular space composition. In response, they exert homeostatic mechanisms critical for maintaining neural circuit function, such as buffering neurotransmitters, modulating extracellular osmolarity and calibrating neurovascular coupling. In addition to upholding normal brain activities, astrocytes respond to diverse forms of brain injury with heterogeneous and progressive changes of gene expression, morphology, proliferative capacity and function that are collectively referred to as reactive astrogliosis. Traumatic brain injury (TBI) sets in motion complex events in which noxious mechanical forces cause tissue damage and disrupt central nervous system (CNS) homeostasis, which in turn trigger diverse multi-cellular responses that evolve over time and can lead either to neural repair or secondary cellular injury. In response to TBI, astrocytes in different cellular microenvironments tune their reactivity to varying degrees of axonal injury, vascular disruption, ischemia and inflammation. Here we review different forms of TBI-induced astrocyte reactivity and the functional consequences of these responses for TBI pathobiology. Evidence regarding astrocyte contribution to post-traumatic tissue repair and synaptic remodeling is examined, and the potential for targeting specific aspects of astrogliosis to ameliorate TBI sequelae is considered.
PMCID: PMC4586307  PMID: 25828533
2.  Endogenous neurogenic cell response in the mature mammalian brain following traumatic injury 
Experimental neurology  2015;275(0 3):405-410.
In the mature mammalian brain, new neurons are generated throughout life in the neurogenic regions of the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampus. Over the past two decades, extensive studies have examined the extent of adult neurogenesis in the SVZ and DG, the role of the adult generated new neurons in normal brain function and the underlying mechanisms regulating the process of adult neurogenesis. The extent and the function of adult neurogenesis under neuropathological conditions have also been explored in varying types of disease models in animals. Increasing evidence has indicated that these endogenous neural stem/progenitor cells may play regenerative and reparative roles in response to CNS injuries or diseases. This review will discuss the potential functions of adult neurogenesis in the injured brain and will describe the recent development of strategies aimed at harnessing this neurogenic capacity in order to repopulate and repair the injured brain following trauma.
PMCID: PMC4627904  PMID: 25936874
Traumatic brain injury; endogenous neurogenesis; subventricular zone; hippocampus; cognitive function
3.  Neonatal Sensory Nerve Injury-Induced Synaptic Plasticity In The Trigeminal Principal Sensory Nucleus 
Experimental neurology  2015;275(0 2):245-252.
Sensory deprivation studies in neonatal mammals, such as monocular eye closure, whisker trimming, chemical blockade of the olfactory epithelium have revealed the importance of sensory inputs in brain wiring during distinct critical periods. But very few studies have paid attention to the effects of neonatal peripheral sensory nerve damage on synaptic wiring of the central nervous system (CNS) circuits. Peripheral somatosensory nerves differ from other special sensory afferents in that they are more prone to crush or severance because of their locations in the body. Unlike the visual and auditory afferents, these nerves show regenerative capabilities after damage. Uniquely, damage to a somatosensory peripheral nerve does not only block activity incoming from the sensory receptors but also mediates injury-induced neuro- and glial chemical signals to the brain through the uninjured central axons of the primary sensory neurons. These chemical signals can have both far more and longer lasting effects than sensory blockade alone. Here we review studies which focus on the consequences of neonatal peripheral sensory nerve damage in the principal sensory nucleus of the brainstem trigeminal complex.
PMCID: PMC4636484  PMID: 25956829
Infraorbital nerve; silent synapses; astrocytes; reactive synaptogenesis; whisker-barrel system
4.  Polypathology and dementia after brain trauma: Does brain injury trigger distinct neurodegenerative diseases, or should it be classified together as traumatic encephalopathy? 
Experimental neurology  2015;275(0 3):381-388.
Neuropathological studies of human traumatic brain injury (TBI) cases have described amyloid plaques acutely after a single severe TBI, and tau pathology after repeat mild TBI (mTBI). This has helped drive the hypothesis that a single moderate to severe TBI increases the risk of developing late-onset Alzheimer’s disease (AD), while mTBI increases the risk of developing chronic traumatic encephalopathy (CTE). In this review we critically assess this position—examining epidemiological and case-control human studies, neuropathological evidence, and preclinical studies.
Epidemiological studies emphasize that TBI is associated with the increased risk of developing multiple types of dementia, not just AD-type dementia, and that TBI can also trigger other neurodegenerative conditions such as Parkinson’s disease. Further, human post-mortem studies on either single TBI and repeat mTBI can show combinations of amyloid, tau, TDP-43, and Lewy body pathology indicating that the neuropathology of TBI is best described as a ‘polypathology’. Preclinical studies confirm that multiple proteins associated with the development of neurodegenerative disease accumulate in the brain after TBI.
The chronic sequelae of both single TBI and repeat mTBI share common neuropathological features and clinical symptoms of classically defined neurodegenerative disorders. However, while the spectrum of chronic cognitive and neurobehavioral disorders that occur following repeat mTBI are viewed as the symptoms of CTE, the spectrum of chronic cognitive and neurobehavioral symptoms that occur after a single TBI is considered to represent distinct neurodegenerative diseases such as AD. These data support the suggestion that the multiple manifestations of TBI-induced neurodegenerative disorders be classified together as traumatic encephalopathy or trauma-induced neurodegeneration, regardless of the nature or frequency of the precipitating TBI.
PMCID: PMC4681695  PMID: 26091850
Traumatic brain injury (TBI); chronic traumatic encephalopathy (CTE); Alzheimer’s disease (AD); amyloid (Aβ); tau; tauopathy; dementia
5.  Persistent changes in peripheral and spinal nociceptive processing after early tissue injury 
Experimental neurology  2015;275(0 2):253-260.
It has become clear that tissue damage during a critical period of early life can result in long-term changes in pain sensitivity, but the underlying mechanisms remain to be fully elucidated. Here we review the clinical and preclinical evidence for persistent alterations in nociceptive processing following neonatal tissue injury, which collectively point to the existence of both a widespread hypoalgesia at baseline as well as an exacerbated degree of hyperalgesia following a subsequent insult to the same somatotopic region. We also highlight recent work investigating the effects of early trauma on the organization and function of ascending pain pathways at a cellular and molecular level. These effects of neonatal injury include altered ion channel expression in both primary afferent and spinal cord neurons, shifts in the balance between synaptic excitation and inhibition within the superficial dorsal horn (SDH) network, and a ‘priming’ of microglial responses in the adult SDH. A better understanding of how early tissue damage influences the maturation of nociceptive circuits could yield new insight into strategies to minimize the long-term consequences of essential, but invasive, medical procedures on the developing somatosensory system.
PMCID: PMC4686380  PMID: 26103453
neonatal; surgical incision; inflammation; microglia; pain; spinal cord; dorsal horn; synapse; patch clamp; DRG; primary afferent; glutamate; GABA; glycine; membrane excitability
6.  Overexpression of the Monocyte Chemokine CCL2 in Dorsal Root Ganglion Neurons Causes a Conditioning-Like Increase in Neurite Outgrowth and Does So via a STAT3 Dependent Mechanism 
Experimental neurology  2015;275(0 1):25-37.
Neuroinflammation plays a critical role in the regeneration of peripheral nerves following axotomy. An injury to the sciatic nerve leads to significant macrophage accumulation in the L5 DRG, an effect not seen when the dorsal root is injured. We recently demonstrated that this accumulation around axotomized cell bodies is necessary for a peripheral conditioning lesion response to occur. Here we asked whether overexpression of the monocyte chemokine CCL2 specifically in DRG neurons of uninjured mice is sufficient to cause macrophage accumulation and to enhance regeneration or whether other injury-derived signals are required. AAV5-EF1α-CCL2 was injected intrathecally, and this injection led to a time-dependent increase in CCL2 mRNA expression and macrophage accumulation in L5 DRG, with a maximal response at 3 wk post-injection. These changes led to a conditioning-like increase in neurite outgrowth in DRG explant and dissociated cell cultures. This increase in regeneration was dependent upon CCL2 acting through its primary receptor CCR2. When CCL2 was overexpressed in CCR2 −/− mice, macrophage accumulation and enhanced regeneration were not observed. To address the mechanism by which CCL2 overexpression enhances regeneration, we tested for elevated expression of regeneration-associated genes in these animals. Surprisingly, we found that CCL2 overexpression led to a selective increase in LIF mRNA and neuronal phosphorylated STAT3 (pSTAT3) in L5 DRGs, with no change in expression seen in other RAGs such as GAP-43. Blockade of STAT3 phosphorylation by each of two different inhibitors prevented the increase in neurite outgrowth. Thus, CCL2 overexpression is sufficient to induce macrophage accumulation in uninjured L5 DRGs and increase the regenerative capacity of DRG neurons via a STAT3-dependent mechanism.
PMCID: PMC4688065  PMID: 26431741
CCL2; MCP-1; DRG; Regeneration; Macrophage; Neuroinflammation; STAT3
7.  Novel p75 neurotrophin receptor ligand stabilizes neuronal calcium, preserves mitochondrial movement and protects against HIV associated neuropathogenesis 
Experimental neurology  2015;275(0 1):182-198.
Human immunodeficiency virus (HIV) rapidly penetrates into the brain and establishes a persistent infection of macrophages/microglia. Activation of these cells by HIV results in the secretion of soluble factors that destabilize neuronal calcium homeostasis, encourage oxidative stress and result in neural damage. This damage is thought to underlie the cognitive-motor dysfunction that develops in many HIV-infected patients. Studies have suggested that neurotrophins may protect neurons from the toxic effects of HIV-associated proteins. To better understand the pathogenic mechanisms and the neuroprotective potential of neurotrophin ligands, we evaluated neuronal damage, calcium homeostasis and mitochondrial functions after exposure of cultured rat neurons directly to HIV gp120 or to conditioned medium from human monocyte-derived macrophages treated with gp120. We then assessed the ability of a new non-peptide p75 neurotrophin receptor ligand, LM11A-31, to stabilize calcium homeostasis and prevent the development of pathology. Each toxic challenge resulted in a delayed accumulation of intracellular calcium coupled to a decrease in the rate of calcium clearance from the cell. The delayed calcium accumulation correlated with the development of focal dendritic swellings (beading), cytoskeletal damage and impaired movement of mitochondria. Addition of LM11A-31 to the cultures at nanomolar concentrations eliminated cell death, significantly reduced the pathology, suppressed the delayed accumulation of calcium and restored mitochondrial movements. The potent neuroprotection and the stabilization of calcium homeostasis indicate that LM11A-31 may have excellent potential for the treatment of HIV-associated neurodegeneration.
PMCID: PMC4688079  PMID: 26424436
dementia; encephalitis; inflammation; viral infection; LM11A-31; nerve growth factor
8.  Co-transplantation of Syngeneic Mesenchymal Stem Cells Improves Survival of Allogeneic Glial-Restricted Precursors in Mouse Brain 
Experimental neurology  2015;275(0 1):154-161.
Loss of functional cells from immunorejection during the early post-transplantation period is an important factor that reduces the efficacy of stem cell-based therapies. Recent studies have shown that transplanted mesenchymal stem cells (MSCs) can exert therapeutic effects by secreting anti-inflammatory and pro-survival trophic factors. We investigated whether co-transplantation of MSCs could improve the survival of other transplanted therapeutic cells. Allogeneic glial-restricted precursors (GRPs) were isolated from the brain of a firefly luciferase transgenic FVB mouse (at E13.5 stage) and intracerebrally transplanted, either alone, or together with syngeneic MSCs in immunocompetent BALB/c mice (n=20) or immunodeficient Rag2−/− mice as survival control (n=8). No immunosuppressive drug was given to any animal. Using bioluminescence imaging (BLI) as a non-invasive readout of cell survival, we found that co-transplantation of MSCs significantly improved (p<0.05) engrafted GRP survival. No significant change in signal intensities were observed in immunodeficient Rag2−/− mice, with transplanted cells surviving in both the GRP only and the GRP+MSC group. In contrast, on day 21 post-transplantation, we observed a 94.2 % decrease in BLI signal intensity in immunocompetent mice transplanted with GRPs alone versus 68.1% in immunocompetent mice co-transplanted with MSCs and GRPs (p<0.05). Immunohistochemical analysis demonstrated a lower number of infiltrating CD45, CD11b+ and CD8+ cells, reduced astrogliosis, and a higher number of FoxP3+ cells at the site of transplantation for the immunocompetent mice receiving MSCs. The present study demonstrates that co-transplantation of MSCs can be used to create a microenvironment that is more conducive to the survival of allogeneic GRPs.
PMCID: PMC4688082  PMID: 26515691
Mesenchymal stem cell; co-transplantation; glial-restricted precursor; bioluminescence imaging; cell survival; immunomodulation
9.  Sex differences in cell genesis, hippocampal volume and behavioral outcomes in a rat model of neonatal HI 
Experimental neurology  2015;275(0 2):285-295.
Hypoxia ischemia (HI) of the brain in near-term and term infants is a leading cause of infant mortality and lifelong disability but current therapeutic approaches remain limited. Males consistently display greater vulnerability to the deleterious consequences of HI in both humans and animal models. Neurogenesis increases after neonatal HI and offers a potential therapeutic target for recovery. The steroid hormone estradiol has been extensively explored as a neuroprotectant in adult models of stroke but with mixed results. Less consideration has been afforded to this naturally occurring agent in the developing brain, which has unique challenges from the adult. Using a model of term HI in the rat we have explored the impact of this insult on cell genesis in the hippocampus of males and females and the ability of estradiol treatment immediately after insult to restore function. Both short-term (3 days) and long-term (7 days) post-injury were assessed and revealed that only females had markedly increased cell genesis on the short-term but both sexes were increased long-term. A battery of behavioral tests revealed motor impairment in males and compromised episodic memory while both sexes were modestly impaired in spatial memory. Juvenile social play was also depressed in both sexes after HI. Estradiol therapy improved behavioral performance in both sexes but did not reverse a deficit in hippocampal volume ipsilateral to the insult. Thus the effects of estradiol do not appear to be via cell death or proliferation but rather involve other components of neural functioning.
PMCID: PMC4688089  PMID: 26376217
hypoxia ischemia; sex differences; rat; estradiol; hippocampus; neurogenesis; neonatal
10.  Fetal stress-mediated hypomethylation increases the brain susceptibility to hypoxic-ischemic injury in neonatal rats 
Experimental neurology  2015;275(0 1):1-10.
Background and Purpose
Fetal hypoxia increases brain susceptibility to hypoxic-ischemic (HI) injury in neonatal rats. Yet mechanisms remain elusive. The present study tested the hypothesis that DNA hypomethylation plays a role in fetal stress-induced increase in neonatal HI brain injury.
Pregnant rats were exposed to hypoxia (10.5% O2) from days 15 to 21 of gestation and DNA methylation was determined in the developing brain. In addition, 5-aza-2’-deoxycytidine (5-Aza) was administered in day 7 pups brains and the HI treatment was conducted in day 10 pups. Brain injury was determined by in vivo MRI 48 h after the HI treatment and neurobehavioral function was evaluated 6 weeks after the HI treatment.
Fetal hypoxia resulted in DNA hypomethylation in the developing brain, which persisted into 30-day old animals after birth. The treatment of neonatal brains with 5-Aza induced similar hypomethylation patterns. Of importance, the 5-Aza treatment significantly increased HI-induced brain injury and worsened neurobehavioral function recovery six weeks after the HI-treatment. In addition, 5-Aza significantly increased HIF-1α mRNA and protein abundance as well as matrix metalloproteinase (MMP)-2 and MMP-9, but decreased MMP-13 protein abundance in neonatal brains. Consistent with the 5-Aza treatment, hypoxia resulted in significantly increased expression of HIF-1α in both fetal and neonatal brains. Inhibition of HIF-1α blocked 5-Aza-mediated changes in MMPs and abrogated 5-Aza-induced increase in HI-mediated brain injury.
The results suggest that fetal stress-mediated DNA hypomethylation in the developing brain causes programming of hypoxic-ischemic sensitive phenotype in the brain and increases the susceptibility of neonatal brain to hypoxic-ischemic injury in a HIF-1α-dependent manner.
PMCID: PMC4688116  PMID: 26597542
fetal hypoxia; hypoxic-ischemic brain injury; DNA methylation; 5-aza-2′-deoxycytidine; hypoxia-inducible factor 1α
11.  Thidoredxin-2 overexpression fails to rescue chronic high calorie diet induced hippocampal dysfunction 
Experimental neurology  2015;275(0 1):126-132.
A high calorie diet (HCD) diet can impair hippocampal synaptic plasticity and cognitive function in animal models. Mitochondrial thioredoxin 2 (TRX-2) is critical for maintaining intracellular redox status, but whether it can protect against HCD-induced impairment of synaptic plasticity is unknown. We found that levels of TRX-2 are reduced in the hippocampus of wild type mice maintained for 8 months on a HCD, and that the mice on the HCD exhibit impaired hippocampal synaptic plasticity (long-term potentiation at CA1 synapses) and cognitive function (novel object recognition). Transgenic mice overexpressing human TRX-2 (hTRX-2) exhibit increased resistance to diquat-induced oxidative stress in peripheral tissues. However, neither the HCD nor hTRX-2 overexpression affected levels of lipid peroxidation products (F2 isoprostanes) in the hippocampus, and hTRX-2 transgenic mice were not protected against the adverse effects of the HCD on hippocampal synaptic plasticity and cognitive function. Our findings indicate that TRX-2 overexpression does not mitigate adverse effects of a HCD on synaptic plasticity, and also suggest that oxidative stress may not be a pivotal factor in the impairment of synaptic plasticity and cognitive function caused by HCDs.
PMCID: PMC4688172  PMID: 26476179
high calorie diet; hippocampus; lipid peroxidation; mitochondria; oxidative stress; synaptic plasticity; thioredoxin
12.  Ziram, a pesticide associated with increased risk for Parkinson’s disease, differentially affects the presynaptic function of aminergic and glutamatergic nerve terminals at the Drosophila neuromuscular junction 
Experimental neurology  2015;275(0 1):232-241.
Multiple populations of aminergic neurons are affected in Parkinson’s disease (PD), with serotonergic and noradrenergic loci responsible for some non-motor symptoms. Environmental toxins, such as the dithiocarbamate fungicide ziram, significantly increase the risk of developing PD and the attendant spectrum of both motor and non-motor symptoms. The mechanisms by which ziram and other environmental toxins increase the risk of PD, and the potential effects of these toxins on aminergic neurons, remain unclear. To determine the relative effects of ziram on the synaptic function of aminergic versus non-aminergic neurons, we used live-imaging at the Drosophila melanogaster larval neuromuscular junction (NMJ). In contrast to nearly all other studies of this model synapse, we imaged presynaptic function at both glutamatergic Type Ib and aminergic Type II boutons, the latter responsible for storage and release of octopamine, the invertebrate equivalent of noradrenalin. To quantify the kinetics of exo- and endo- cytosis, we employed an acid-sensitive form of GFP fused to the Drosophila vesicular monoamine transporter (DVMAT-pHluorin). Additional genetic probes were used to visualize intracellular calcium flux (GCaMP) and voltage changes (ArcLight). We find that at glutamatergic Type Ib terminals, exposure to ziram increases exocytosis and inhibits endocytosis. By contrast, at octopaminergic Type II terminals, ziram has no detectable effect on exocytosis and dramatically inhibits endocytosis. In contrast to other reports on the neuronal effects of ziram, these effects do not appear to result from perturbation of the UPS or calcium homeostasis. Unexpectedly, ziram also caused spontaneous and synchronized bursts of calcium influx (measured by GCaMP) and electrical activity (measured by ArcLight) at aminergic Type II, but not glutamatergic Type Ib, nerve terminals. These events are sensitive to both tetrodotoxin and cadmium chloride, and thus appear to represent spontaneous depolarizations followed by calcium influx into Type II terminals. We speculate that the differential effects of ziram on Type II versus Type Ib terminals may be relevant to the specific sensitivity of aminergic neurons in PD, and suggest that changes neuronal excitability could contribute to the increased risk for PD caused by exposure to ziram. We also suggest that the fly NMJ will be useful to explore the synaptic effects of other pesticides associated with an increased risk of PD.
PMCID: PMC4688233  PMID: 26439313
ziram; dithiocarbamate; neuronal excitability; Parkinson’s disease; Drosophila; dopamine; octopamine; pesticide; fungicide
13.  Microglia in the TBI Brain: The Good, The Bad, And The Dysregulated 
Experimental neurology  2015;275(0 3):316-327.
As the major cellular component of the innate immune system in the central nervous system (CNS) and the first line of defense whenever injury or disease occurs, microglia play a critical role in neuroinflammation following a traumatic brain injury (TBI). In the injured brain microglia can produce neuroprotective factors, clear cellular debris and orchestrate neurorestorative processes that are beneficial for neurological recovery after TBI. However, microglia can also become dysregulated and can produce high levels of pro-inflammatory and cytotoxic mediators that hinder CNS repair and contribute to neuronal dysfunction and cell death. The dual role of microglial activation in promoting beneficial and detrimental effects on neurons may be accounted for by their polarization state and functional responses after injury. In this review article we discuss emerging research on microglial activation phenotypes in the context of acute brain injury, and the potential role of microglia in phenotype-specific neurotrestorative processes such as neurogenesis, angiogenesis, olgogendrogenesis and regeneration. We also describe some of the known molecular mechanisms that regulate phenotype switching, and highlight new therapeutic approaches that alter microglial activation state balance to enhance long-term functional recovery after TBI. An improved understanding of the regulatory mechanisms that control microglial phenotypic shifts may advance our knowledge of post-injury recovery and repair, and provide opportunities for the development of novel therapeutic strategies for TBI.
PMCID: PMC4689601  PMID: 26342753
Traumatic brain injury; neuroinflammation; microglia; macrophage; phenotype; M1-like; M2-like; polarization; neurodegeneration; repair
14.  Altered terminal Schwann cell morphology precedes denervation in SOD1 mice 
Experimental neurology  2015;275(0 1):172-181.
In mice that express SOD1 mutations found in human motor neuron disease, degeneration begins in the periphery for reasons that remain unknown. At the neuromuscular junction (NMJ), terminal Schwann cells (TSCs) have an intimate relationship with motor terminals and are believed to help maintain the integrity of the motor terminal. Recent evidence indicates that TSCs in some SOD1 mice exhibit abnormal functional properties, but other aspects of possible TSC involvement remain unknown. In this study, an analysis of TSC morphology and number was performed in relation to NMJ innervation status in mice which express the G93A SOD1 mutation. At P30, all NMJs of the fast medial gastrocnemius (MG) muscle were fully innervated by a single motor axon but 50% of NMJs lacked TSC cell bodies and were instead covered by the processes of Schwann cells with cell bodies located on the preterminal axons. NMJs in P30 slow soleus muscles were also fully innervated by single motor axons and only 5% of NMJs lacked a TSC cell body. At P60, about 25% of MG NMJs were denervated and lacked labeling for TSCs while about 60% of innervated NMJs lacked TSC cell bodies. In contrast, 96% of P60 soleus NMJs were innervated while 9% of innervated NMJs lacked TSC cell bodies. The pattern of TSC abnormalities found at P30 thus correlates with the pattern of denervation found at P60. Evidence from mice that express the G85R SOD1 mutation indicate that TSC abnormalities are not unique for mice that express G93A SOD1 mutations. These results add to an emerging understanding that TSCs may play a role in motor terminal degeneration and denervation in animal models of motor neuron disease.
PMCID: PMC4768763  PMID: 26416261
motor neuron disease; terminal Schwann cell; neurodegeneration; motor terminal; denervation; neuromuscular junction
15.  Dysfunction in Amygdala-Prefrontal Plasticity and Extinction-Resistant Avoidance: A Model for Anxiety Disorder Vulnerability 
Experimental neurology  2015;275(Pt 1):59-68.
Individuals exhibiting an anxiety disorder are believed to possess an innate vulnerability that makes them susceptible to the disorder. Anxiety disorders are also associated with abnormalities in the interconnected brain regions of the amygdala and prefrontal cortex (PFC). However, the link between anxiety vulnerability and amygdala-PFC dysfunction is currently unclear. Accordingly, the present study sought to determine if innate dysfunction within the amygdala to PFC projection underlies the susceptibility to develop anxiety-like behavior, using an anxiety vulnerable rodent model. The inbred Wistar Kyoto (WKY) rat was used to model vulnerability, as this strain naturally expresses extinction-resistant avoidance; a behavior that models the symptom of avoidance present in anxiety disorders. Synaptic plasticity was assessed within the projection from the basolateral nucleus of the amygdala (BLA) to the prelimbic cortical subdivision of the PFC in WKY and Sprague Dawley (SD) rats. While WKY rats exhibited normal paired-pulse plasticity, they did not maintain long-term potentiation (LTP) as SD rats. Thus, impaired plasticity within the BLA-PL cortex projection may contribute to extinction resistant avoidance of WKY, as lesions of the PL cortex in SD rats impaired extinction of avoidance similar to WKY rats. Treatment with d-cycloserine to reverse the impaired LTP in WKY rats was unsuccessful. The lack of LTP in WKY rats was associated with a significant reduction of NMDA receptors containing NR2A subunits in the PL cortex. Thus, dysfunction in amygdala-PFC plasticity is innate in anxiety vulnerable rats and may promote extinction-resistant avoidance by disrupting communication between the amygdala and prefrontal cortex.
PMCID: PMC4791945  PMID: 26546833
Anxiety Vulnerability; Long-term Potentiation; Avoidance; Wistar Kyoto Rat; NR2A; NMDA
16.  The Long-term Impact of Early Life Pain On Adult Responses to Anxiety and Stress: Historical Perspectives and Empirical Evidence 
Experimental neurology  2015;275(Pt 2):261-273.
Approximately 1 in 6 infants are born prematurely each year. Typically, these infants spend 25 days in the Neonatal Intensive Care Unit (NICU) where they experience 10–18 painful and inflammatory procedures each day. Remarkably, pre-emptive analgesics and/or anesthesia are administered less than 25% of the time. Unalleviated pain during the perinatal period is associated with permanent decreases in pain sensitivity, blunted cortisol responses and high rates of neuropsychiatric disorders. To date, the mechanism(s) by which these long-term changes in stress and pain behavior occur, and whether such alterations can be prevented by appropriate analgesia at the time of insult, remains unclear. Work in our lab using a rodent model of early life pain suggests that inflammatory pain experienced on the day of birth blunts adult responses to stress- and pain-provoking stimuli, and dysregulates the hypothalamic pituitary adrenal (HPA) axis in part through a permanent upregulation in central endogenous opioid tone. This review focuses on the long-term impact of neonatal inflammatory pain on adult anxiety- and stress-related responses, and underlying neuroanatomical changes in the context of endogenous pain control and the HPA axis. These two systems are in a state of exaggerated developmental plasticity early in postnatal life, and work in concert to respond to noxious or aversive stimuli. We present empirical evidence from animal and clinical studies, and discuss historical perspectives underlying the lack of analgesia/anesthetic use for early life pain in the modern NICU.
PMCID: PMC4977201  PMID: 26210872
Hypothalamic pituitary adrenal axis; Amygdala; Periaqueductal gray; Corticosterone; Glucocorticoid receptor; Corticotrophin releasing factor receptors; Endogenous opioids; Enkephalin; Endorphin; Morphine
17.  Enhanced recovery of breathing capacity from combined adenosine 2A receptor inhibition and daily acute intermittent hypoxia after chronic cervical spinal injury 
Experimental neurology  2016;287(Pt 2):93-101.
Daily acute intermittent hypoxia (dAIH) improves breathing capacity after C2 spinal hemisection (C2HS) in rats. Since C2HS disrupts spinal serotonergic innervation below the injury, adenosine-dependent mechanisms underlie dAIH-induced functional recovery 2 weeks post-injury. We hypothesized that dAIH-induced functional recovery converts from an adenosine-dependent to a serotonin-dependent, adenosine-constrained mechanism with chronic injury. Eight weeks post-C2HS, rats began dAIH (10, 5-min episodes, 10.5% O2; 5-min intervals; 7 days) followed by AIH 3× per week (3×wAIH) for 8 additional weeks with/without systemic A2A receptor inhibition (KW6002) on each AIH exposure day. Tidal volume (VT) and bilateral diaphragm (Dia) and T2 external intercostal motor activity were assessed in unanesthetized rats breathing air and during maximum chemoreflex stimulation (MCS: 7% CO2, 10.5% O2). Nine weeks post-C2HS, dAIH increased VT versus time controls (p < 0.05), an effect enhanced by KW6002 (p < 0.05). dAIH increased bilateral Dia activity (p < 0.05), and KW6002 enhanced this effect in contralateral (p < 0.05) and ipsilateral Dia activity (p < 0.001), but not T2 inspiratory activity. Functional benefits of combined AIH plus systemic A2A receptor inhibition were maintained for 4 weeks. Thus, in rats with chronic injuries: 1) dAIH improves VT and bilateral diaphragm activity; 2) VT recovery is enhanced by A2A receptor inhibition; and 3) functional recovery with A2A receptor inhibition and AIH “reminders” last 4 weeks. Combined dAIH and A2A receptor inhibition may be a simple, safe, and effective strategy to accelerate/enhance functional recovery of breathing capacity in patients with respiratory impairment from chronic spinal injury.
PMCID: PMC5193117  PMID: 27079999
Intermittent hypoxia; Spinal cord injury; Chronic; Functional recovery; Breathing; Spinal plasticity; Adenosine receptors; Rehabilitation; Hemisection; Cervical
18.  An Scn1a epilepsy mutation in Scn8a alters seizure susceptibility and behavior 
Experimental neurology  2015;275(0 1):46-58.
Understanding the role of SCN8A in epilepsy and behavior is critical in light of recently identified human SCN8A epilepsy mutations. We have previously demonstrated that Scn8amed and Scn8amed-jo mice carrying mutations in the Scn8a gene display increased resistance to flurothyl and kainic acid-induced seizures; however, they also exhibit spontaneous absence seizures. To further investigate the relationship between altered SCN8A function and epilepsy, we introduced the SCN1A-R1648H mutation, identified in a family with generalized epilepsy with febrile seizures plus (GEFS+), into the corresponding position (R1627H) of the mouse Scn8a gene. Heterozygous R1627H mice exhibited increased resistance to some forms of pharmacologically and electrically induced seizures and the mutant Scn8a allele ameliorated the phenotype of Scn1a-R1648H mutants. Hippocampal slices from heterozygous R1627H mice displayed decreased bursting behavior compared to wild-type littermates. Paradoxically, at the homozygous level, R1627H mice did not display increased seizure resistance and were susceptible to audiogenic seizures. We furthermore observed increased hippocampal pyramidal cell excitability in heterozygous and homozygous Scn8a-R1627H mutants, and decreased interneuron excitability in heterozygous Scn8a-R1627H mutants. These results expand the phenotypes associated with disruption of the Scn8a gene and demonstrate that an Scn8a mutation can both confer seizure protection and increase seizure susceptibility.
PMCID: PMC4688066  PMID: 26410685
Nav1.6; Nav1.1; Audiogenic seizure; voltage sensor; sodium channel; GEFS+; Dravet Syndrome; interneuron
19.  Current status of fluid biomarkers in mild traumatic brain injury 
Experimental neurology  2015;275(0 3):334-352.
Mild traumatic brain injury (mTBI) affects millions of people annually and is difficult to diagnose. Mild injury is insensitive to conventional imaging techniques and diagnoses are often made using subjective criteria such as self-reported symptoms. Many people who sustain a mTBI develop persistent post-concussive symptoms. Athletes and military personnel are at great risk for repeat injury which can result in second impact syndrome or chronic traumatic encephalopathy. An objective and quantifiable measure, such as a serum biomarker, is needed to aid in mTBI diagnosis, prognosis, return to play/duty assessments, and would further elucidate mTBI pathophysiology. The majority of TBI biomarker research focuses on severe TBI with few studies specific to mild injury. Most studies use a hypothesis-driven approach, screening biofluids for markers known to be associated with TBI pathophysiology. This approach has yielded limited success in identifying markers that can be used clinically, additional candidate biomarkers are needed. Innovative and unbiased methods such as proteomics, microRNA arrays, urinary screens, autoantibody identification and phage display would complement more traditional approaches to aid in the discovery of novel mTBI biomarkers.
PMCID: PMC4699183  PMID: 25981889
Mild traumatic brain injury; Biomarkers; Serum; Cerebral spinal fluid; Biofluid; Novel; Discovery; Unbiased
20.  Sirtuin-2 mediates male specific neuronal injury following experimental cardiac arrest through activation of TRPM2 ion channels 
Experimental neurology  2015;275(Pt 1):78-83.
Sirtuins (Sirt) are a class of deacetylase enzymes that play an important role in cell proliferation. Sirt2 activation produces O-acetylated-ADPribose (OAADPr) which can act as a ligand for transient receptor potential cation channel, M2 (TRPM2). We tested the hypothesis that Sirt2 is activated following global cerebral ischemia and contributes to neuronal injury through activation of TRPM2.
Adult male and female mice (8–12 weeks old) C57Bl/6 and TRPM2 knock-out mice were subjected to 8 min of cardiac arrest followed by cardiopulmonary resuscitation (CA/CPR). The Sirt2 inhibitor AGK-2 was administered intravenously 30 min after resuscitation. Hippocampal CA1 injury was analyzed at 3 days after CA/CPR. Acute Sirt2 activity was analyzed at 3 and 24 h after CA/CPR. Long-term hippocampal function was assessed using slice electrophysiology 7 days after CA/CPR.
AGK-2 significantly reduced CA1 injury in WT but not TRPM2 knock-out males and had no effect on CA1 injury in females. Elevated Sirt2 activity was observed in hippocampal tissue from males at 24 h after cardiac arrest and was reduced by AGK-2. In contrast, Sirt2 activity in females was increased at 3 but not 24 h. Finally, we observed long-term benefit of AGK-2 on hippocampal function, with a protection of long-term potentiation at CA1 synapses at 7 and 30 days after ischemia.
In summary, we observed a male specific activation of Sirt2 that contributes to neuronal injury and functional deficits after ischemia specifically in males. These results are consistent with a role of Sirt2 in activating TRPM2 following global ischemia in a sex specific manner. These results support the growing body of literature showing that oxidative stress mechanisms predominate in males and converge on TRPM2 activation as a mediator of cell death.
PMCID: PMC5193101  PMID: 26522013
TRPM2; Sirtuin; Cerebral ischemia; Cardiac arrest
21.  Post-trauma administration of the pifithrin-α oxygen analogue improves histological and functional outcomes after experimental traumatic brain injury 
Experimental neurology  2015;269:56-66.
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Programmed death of neuronal cells plays a crucial role in acute and chronic neurodegeneration following TBI. The tumor suppressor protein p53, a transcription factor, has been recognized as an important regulator of apoptotic neuronal death. The p53 inactivator pifithrin-α (PFT-α) has been shown to be neuroprotective against stroke. A previous cellular study indicated that PFT-α oxygen analogue (PFT-α (O)) is more stable and active than PFT-α. We aimed to investigate whether inhibition of p53 using PFT-α or PFT-α (O) would be a potential neuroprotective strategy for TBI. To evaluate whether these drugs protect against excitotoxicity in vitro, primary rat cortical cultures were challenged with glutamate (50mM) in the presence or absence of various concentrations of the p53 inhibitors PFT-α or PFT-α (O). Cell viability was estimated by LDH assay. In vivo, adult Sprague Dawley rats were subjected to controlled cortical impact (CCI, with 4m/s velocity, 2 mm deformation). Five hours after injury, PFT-α or PFT-α (O) (2 mg/kg, i.v.) was administered to animals. Sensory and motor functions were evaluated by behavioral tests at 24 h after TBI. Apoptotic cells and p53-positive neurons were identified by double staining with cell-specific markers. Levels of mRNA encoding for p53-regulated genes (BAX, PUMA, Bcl-2 and p21) were measured by reverse transcription followed by real time-PCR from TBI animals without or with PFT- α/PFT- α (O) treatment. We found that PFT-α (O) (10uM) enhanced neuronal survival against glutamate-induced cytotoxicity in vitro more effectively than PFT-α (10uM). In vivo PFT-α (O) treatment enhanced functional recovery and decreased contusion volume at 24 h post-injury. Neuroprotection by PFT-α (O) treatment also reduced p53-positive neurons in the cortical contusion region. In addition, p53-regulated PUMA mRNA levels at 8h were significantly reduced by PFT-α (O) administration after TBI. PFT-α (O) treatment also decreased phospho-p53 positive neurons in the cortical contusion region. Our data suggest that PFT-α (O) provided a significant reduction of cortical cell death and protected neurons from glutamate-induced excitotoxicity in vitro, as well as improved neurological functional outcome and reduced brain injury in vivo via anti-apoptotic mechanisms. The inhibition of p53-induced apoptosis by PFT-α (O) provides a useful tool to evaluate reversible apoptotic mechanisms and may develop into a novel therapeutic strategy for TBI.
PMCID: PMC5193498  PMID: 25819102
Traumatic brain injury (TBI); p53; pifithrin-α (PFT-α); PFT-α oxygen analogue; apoptosis; controlled cortical impact
22.  Modeling the complex pathology of Alzheimer’s disease in Drosophila 
Experimental neurology  2015;274(0 0):58-71.
Alzheimer’s disease (AD) is the leading cause of dementia and the most common neurodegenerative disorder. AD is mostly a sporadic disorder and its main risk factor is age, but mutations in three genes that promote the accumulation of the amyloid-β (Aβ42) peptide revealed the critical role of Amyloid precursor protein (APP) processing in AD. Neurofibrillary tangles enriched in tau are the other pathological hallmark of AD, but the lack of causative tau mutations still puzzles researchers. Here, we describe the contribution of a powerful invertebrate model, the fruit fly Drosophila melanogaster, to uncovering the function and pathogenesis of human APP, Aβ42, and tau. APP and tau participate in many complex cellular processes, although their main function is microtubule stabilization and the to-and-fro transport of axonal vesicles. Additionally, expression of secreted Aβ42 induces prominent neuronal death in Drosophila, a critical feature of AD, making this model a popular choice for identifying intrinsic and extrinsic factors mediating Aβ42 neurotoxicity. Overall, Drosophila has made significant contributions to better understand the complex pathology of AD, although additional insight can be expected from combining multiple transgenes, performing genome-wide loss-of-function screens, and testing anti-tau therapies alone or in combination with Aβ42.
PMCID: PMC4644457  PMID: 26024860
Experimental neurology  2015;274(0 0):80-87.
This paper reviews Drosophila voltage-gated Na+ channel mutations encoded by the para (paralytic) gene and their contributions to seizure disorders in the fly. Numerous mutations cause seizure-sensitivity, for example, parabss1, with phenotypes that resemble human intractable epilepsy in some aspects. Seizure phenotypes are also seen with human GEFS+ spectrum mutations that have been knocked into the Drosophila para gene, paraGEFS+ and paraDS alleles. Other para mutations, paraST76 and paraJS act as seizure-suppressor mutations reverting seizure phenotypes in other mutants. Seizure-like phenotypes are observed from mutations and other conditions that cause a persistent Na+ current through either changes in mRNA splicing or protein structure.
PMCID: PMC4644469  PMID: 26093037
Drosophila; epilepsy; intractable epilepsy; sodium channel; seizure-suppressor genes
24.  Studying Polyglutamine Diseases in Drosophila 
Experimental neurology  2015;274(0 0):25-41.
Polyglutamine (polyQ) diseases are a family of dominantly transmitted neurodegenerative disorders caused by an abnormal expansion of CAG trinucleotide repeats in the protein-coding regions of the respective disease-causing genes. Despite their simple genetic basis, the etiology of these diseases is far from clear. Over the past two decades, Drosophila has proven to be successful in modeling this family of neurodegenerative disorders, including the faithful recapitulation of pathological features such as polyQ length-dependent formation of protein aggregates and progressive neuronal degeneration. Additionally, it has been valuable in probing the pathogenic mechanisms, in identifying and evaluating disease modifiers, and in helping elucidate the normal functions of disease-causing genes. Knowledge learned from this simple invertebrate organism has had a large impact on our understanding of these devastating brain diseases.
PMCID: PMC4644473  PMID: 26257024
25.  Sugar-Dependent Modulation of Neuronal Development, Regeneration, and Plasticity by Chondroitin Sulfate Proteoglycans 
Experimental neurology  2015;274(0 0):115-125.
Chondroitin sulfate proteoglycans (CSPGs) play important roles in the developing and mature nervous system, where they guide axons, maintain stable connections, restrict synaptic plasticity, and prevent axon regeneration following CNS injury. The chondroitin sulfate glycosaminoglycan (CS GAG) chains that decorate CSPGs are essential for their functions. Through these sugar chains, CSPGs are able to bind and regulate the activity of a diverse range of proteins. CSPGs have been found both to promote and inhibit neuronal growth. They can promote neurite outgrowth by binding to various growth factors such as midkine (MK), pleiotrophin (PTN), brain-derived neurotrophic factor (BDNF) and other neurotrophin family members. CSPGs can also inhibit neuronal growth and limit plasticity by interacting with transmembrane receptors such as protein tyrosine phosphatase σ (PTPσ), leukocyte common antigen-related (LAR) receptor protein tyrosine phosphatase, and the Nogo receptors 1 and 3 (NgR1 and NgR3). These CS-protein interactions depend on specific sulfation patterns within the CS GAG chains, and accordingly, particular CS sulfation motifs are upregulated during development, in the mature nervous system, and in response to CNS injury. Thus, spatiotemporal regulation of CS GAG biosynthesis may provide an important mechanism to control the functions of CSPGs and to modulate intracellular signaling pathways. Here, we will discuss these sulfation-dependent processes and highlight how the CS sugars on CSPGs contribute to neuronal growth, axon guidance, and plasticity in the nervous system.
PMCID: PMC4679498  PMID: 26315937
Chondroitin sulfate (CS); Glycosaminoglycans; CSPG; Proteoglycan; CSPG receptor; Neuronal growth; Axon guidance; Axon regeneration; Neuronal injury; Plasticity

Results 1-25 (1016)