PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Noise in a Small Genetic Circuit that Undergoes Bifurcation 
Complexity  2005;11(1):45-51.
Based on the consideration of Boolean dynamics, it has been hypothesized that cell types may correspond to alternative attractors of a gene regulatory network. Recent stochastic Boolean network analysis, however, raised the important question concerning the stability of such attractors. In this paper a detailed numerical analysis is performed within the framework of Langevin dynamics. While the present results confirm that the noise is indeed an important dynamical element, the cell type as represented by attractors can still be a viable hypothesis. It is found that the stability of an attractor depends on the strength of noise related to the distance of the system to the bifurcation point and it can be exponentially stable depending on biological parameters.
doi:10.1002/cplx.20099
PMCID: PMC1456069  PMID: 16670776
cell types; attractors; genetic networks; stability; robustness; stochastic processes; Langevin dynamics
2.  Insulin-like growth factor binding protein 2 promotes ovarian cancer cell invasion 
Molecular Cancer  2005;4:7.
Background
Insulin-like growth factor binding protein 2 (IGFBP2) is overexpressed in ovarian malignant tissues and in the serum and cystic fluid of ovarian cancer patients, suggesting an important role of IGFBP2 in the biology of ovarian cancer. The purpose of this study was to assess the role of increased IGFBP2 in ovarian cancer cells.
Results
Using western blotting and tissue microarray analyses, we showed that IGFBP2 was frequently overexpressed in ovarian carcinomas compared with normal ovarian tissues. Furthermore, IGFBP2 was significantly overexpressed in invasive serous ovarian carcinomas compared with borderline serous ovarian tumors. To test whether increased IGFBP2 contributes to the highly invasive nature of ovarian cancer cells, we generated IGFBP2-overexpressing cells from an SKOV3 ovarian cancer cell line, which has a very low level of endogenous IGFBP2. A Matrigel invasion assay showed that these IGFBP2-overexpressing cells were more invasive than the control cells. We then designed small interference RNA (siRNA) molecules that attenuated IGFBP2 expression in PA-1 ovarian cancer cells, which have a high level of endogenous IGFBP2. The Matrigel invasion assay showed that the attenuation of IGFBP2 expression indeed decreased the invasiveness of PA-1 cells.
Conclusions
We therefore showed that IGFBP2 enhances the invasion capacity of ovarian cancer cells. Blockage of IGFBP2 may thus constitute a viable strategy for targeted cancer therapy.
doi:10.1186/1476-4598-4-7
PMCID: PMC549074  PMID: 15686601

Results 1-2 (2)