Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)
Year of Publication
Document Types
Methods in enzymology  2009;467:335-356.
Traditionally molecular biology research has tended to reduce biological pathways to composite units studied as isolated parts of the cellular system. With the advent of high throughput methodologies that can capture thousands of data points, and powerful computational approaches, the reality of studying cellular processes at a systems level is upon us. As these approaches yield massive datasets, systems level analyses have drawn upon other fields such as engineering and mathematics, adapting computational and statistical approaches to decipher relationships between molecules. Guided by high quality datasets and analyses, one can begin the process of predictive modeling. The findings from such approaches are often surprising and beyond normal intuition. We discuss four classes of dynamical systems used to model genetic regulatory networks. The discussion is divided into continuous and discrete models, as well as deterministic and stochastic model classes. For each combination of these categories, a model is presented and discussed in the context of the yeast cell cycle, illustrating how different types of questions can be addressed by different model classes.
PMCID: PMC3230268  PMID: 19897099
2.  Role of the transcription factor C/EBPδ in a regulatory circuit that discriminates between transient and persistent Toll-like receptor 4-induced signals 
Nature immunology  2009;10(4):437-443.
The innate immune system is a two-edged sword; it is absolutely required for host defense against infection but, uncontrolled, can trigger a plethora of inflammatory diseases. Here we used systems biology approaches to predict and validate a gene regulatory network involving a dynamic interplay between the transcription factors NF-κB, C/EBPδ, and ATF3 that controls inflammatory responses. We mathematically modeled transcriptional regulation of Il6 and Cebpd genes and experimentally validated the prediction that the combination of an initiator (NF-κB), an amplifier (C/EBPδ) and an attenuator (ATF3) forms a regulatory circuit that discriminates between transient and persistent Toll-like receptor 4-induced signals. Our results suggest a mechanism that enables the innate immune system to detect the duration of infection and to respond appropriately.
PMCID: PMC2780024  PMID: 19270711
3.  A data integration framework for prediction of transcription factor targets: a BCL6 case study 
We present a computational framework for predicting targets of transcription factor regulation. The framework is based on the integration of a number of sources of evidence, derived from DNA sequence and gene expression data, using a weighted sum approach. Sources of evidence are prioritized based on a training set, and their relative contributions are then optimized. The performance of the proposed framework is demonstrated in the context of BCL6 target prediction. We show that this framework is able to uncover BCL6 targets reliably when biological prior information is utilized effectively, particularly in the case of sequence analysis. The framework results in a considerable gain in performance over scores in which sequence information was not incorporated. This analysis shows that with assessment of the quality and biological relevance of the data, reliable predictions can be obtained with this computational framework.
PMCID: PMC2771581  PMID: 19348642
network inference; transcription factor binding site prediction; data integration
4.  Bright Field Microscopy as an Alternative to Whole Cell Fluorescence in Automated Analysis of Macrophage Images 
PLoS ONE  2009;4(10):e7497.
Fluorescence microscopy is the standard tool for detection and analysis of cellular phenomena. This technique, however, has a number of drawbacks such as the limited number of available fluorescent channels in microscopes, overlapping excitation and emission spectra of the stains, and phototoxicity.
We here present and validate a method to automatically detect cell population outlines directly from bright field images. By imaging samples with several focus levels forming a bright field -stack, and by measuring the intensity variations of this stack over the -dimension, we construct a new two dimensional projection image of increased contrast. With additional information for locations of each cell, such as stained nuclei, this bright field projection image can be used instead of whole cell fluorescence to locate borders of individual cells, separating touching cells, and enabling single cell analysis. Using the popular CellProfiler freeware cell image analysis software mainly targeted for fluorescence microscopy, we validate our method by automatically segmenting low contrast and rather complex shaped murine macrophage cells.
The proposed approach frees up a fluorescence channel, which can be used for subcellular studies. It also facilitates cell shape measurement in experiments where whole cell fluorescent staining is either not available, or is dependent on a particular experimental condition. We show that whole cell area detection results using our projected bright field images match closely to the standard approach where cell areas are localized using fluorescence, and conclude that the high contrast bright field projection image can directly replace one fluorescent channel in whole cell quantification. Matlab code for calculating the projections can be downloaded from the supplementary site:
PMCID: PMC2760782  PMID: 19847301
5.  Fewer permutations, more accurate P-values 
Bioinformatics  2009;25(12):i161-i168.
Motivation: Permutation tests have become a standard tool to assess the statistical significance of an event under investigation. The statistical significance, as expressed in a P-value, is calculated as the fraction of permutation values that are at least as extreme as the original statistic, which was derived from non-permuted data. This empirical method directly couples both the minimal obtainable P-value and the resolution of the P-value to the number of permutations. Thereby, it imposes upon itself the need for a very large number of permutations when small P-values are to be accurately estimated. This is computationally expensive and often infeasible.
Results: A method of computing P-values based on tail approximation is presented. The tail of the distribution of permutation values is approximated by a generalized Pareto distribution. A good fit and thus accurate P-value estimates can be obtained with a drastically reduced number of permutations when compared with the standard empirical way of computing P-values.
Availability: The Matlab code can be obtained from the corresponding author on request.
Supplementary information:Supplementary data are available at Bioinformatics online.
PMCID: PMC2687965  PMID: 19477983
6.  Adaptable data management for systems biology investigations 
BMC Bioinformatics  2009;10:79.
Within research each experiment is different, the focus changes and the data is generated from a continually evolving barrage of technologies. There is a continual introduction of new techniques whose usage ranges from in-house protocols through to high-throughput instrumentation. To support these requirements data management systems are needed that can be rapidly built and readily adapted for new usage.
The adaptable data management system discussed is designed to support the seamless mining and analysis of biological experiment data that is commonly used in systems biology (e.g. ChIP-chip, gene expression, proteomics, imaging, flow cytometry). We use different content graphs to represent different views upon the data. These views are designed for different roles: equipment specific views are used to gather instrumentation information; data processing oriented views are provided to enable the rapid development of analysis applications; and research project specific views are used to organize information for individual research experiments. This management system allows for both the rapid introduction of new types of information and the evolution of the knowledge it represents.
Data management is an important aspect of any research enterprise. It is the foundation on which most applications are built, and must be easily extended to serve new functionality for new scientific areas. We have found that adopting a three-tier architecture for data management, built around distributed standardized content repositories, allows us to rapidly develop new applications to support a diverse user community.
PMCID: PMC2670281  PMID: 19265554
7.  Using cell fate attractors to uncover transcriptional regulation of HL60 neutrophil differentiation 
BMC Systems Biology  2009;3:20.
The process of cellular differentiation is governed by complex dynamical biomolecular networks consisting of a multitude of genes and their products acting in concert to determine a particular cell fate. Thus, a systems level view is necessary for understanding how a cell coordinates this process and for developing effective therapeutic strategies to treat diseases, such as cancer, in which differentiation plays a significant role. Theoretical considerations and recent experimental evidence support the view that cell fates are high dimensional attractor states of the underlying molecular networks. The temporal behavior of the network states progressing toward different cell fate attractors has the potential to elucidate the underlying molecular mechanisms governing differentiation.
Using the HL60 multipotent promyelocytic leukemia cell line, we performed experiments that ultimately led to two different cell fate attractors by two treatments of varying dosage and duration of the differentiation agent all-trans-retinoic acid (ATRA). The dosage and duration combinations of the two treatments were chosen by means of flow cytometric measurements of CD11b, a well-known early differentiation marker, such that they generated two intermediate populations that were poised at the apparently same stage of differentiation. However, the population of one treatment proceeded toward the terminally differentiated neutrophil attractor while that of the other treatment reverted back toward the undifferentiated promyelocytic attractor. We monitored the gene expression changes in the two populations after their respective treatments over a period of five days and identified a set of genes that diverged in their expression, a subset of which promotes neutrophil differentiation while the other represses cell cycle progression. By employing promoter based transcription factor binding site analysis, we found enrichment in the set of divergent genes, of transcription factors functionally linked to tumor progression, cell cycle, and development.
Since many of the transcription factors identified by this approach are also known to be implicated in hematopoietic differentiation and leukemia, this study points to the utility of incorporating a dynamical systems level view into a computational analysis framework for elucidating transcriptional mechanisms regulating differentiation.
PMCID: PMC2652435  PMID: 19222862

Results 1-7 (7)