PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Genome-wide histone acetylation data improve prediction of mammalian transcription factor binding sites 
Bioinformatics  2010;26(17):2071-2075.
Motivation: Histone acetylation (HAc) is associated with open chromatin, and HAc has been shown to facilitate transcription factor (TF) binding in mammalian cells. In the innate immune system context, epigenetic studies strongly implicate HAc in the transcriptional response of activated macrophages. We hypothesized that using data from large-scale sequencing of a HAc chromatin immunoprecipitation assay (ChIP-Seq) would improve the performance of computational prediction of binding locations of TFs mediating the response to a signaling event, namely, macrophage activation.
Results: We tested this hypothesis using a multi-evidence approach for predicting binding sites. As a training/test dataset, we used ChIP-Seq-derived TF binding site locations for five TFs in activated murine macrophages. Our model combined TF binding site motif scanning with evidence from sequence-based sources and from HAc ChIP-Seq data, using a weighted sum of thresholded scores. We find that using HAc data significantly improves the performance of motif-based TF binding site prediction. Furthermore, we find that within regions of high HAc, local minima of the HAc ChIP-Seq signal are particularly strongly correlated with TF binding locations. Our model, using motif scanning and HAc local minima, improves the sensitivity for TF binding site prediction by ∼50% over a model based on motif scanning alone, at a false positive rate cutoff of 0.01.
Availability: The data and software source code for model training and validation are freely available online at http://magnet.systemsbiology.net/hac.
Contact: aderem@systemsbiology.org; ishmulevich@systemsbiology.org
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btq405
PMCID: PMC2922897  PMID: 20663846
2.  Probabilistic analysis of gene expression measurements from heterogeneous tissues 
Bioinformatics  2010;26(20):2571-2577.
Motivation: Tissue heterogeneity, arising from multiple cell types, is a major confounding factor in experiments that focus on studying cell types, e.g. their expression profiles, in isolation. Although sample heterogeneity can be addressed by manual microdissection, prior to conducting experiments, computational treatment on heterogeneous measurements have become a reliable alternative to perform this microdissection in silico. Favoring computation over manual purification has its advantages, such as time consumption, measuring responses of multiple cell types simultaneously, keeping samples intact of external perturbations and unaltered yield of molecular content.
Results: We formalize a probabilistic model, DSection, and show with simulations as well as with real microarray data that DSection attains increased modeling accuracy in terms of (i) estimating cell-type proportions of heterogeneous tissue samples, (ii) estimating replication variance and (iii) identifying differential expression across cell types under various experimental conditions. As our reference we use the corresponding linear regression model, which mirrors the performance of the majority of current non-probabilistic modeling approaches.
Availability and Software: All codes are written in Matlab, and are freely available upon request as well as at the project web page http://www.cs.tut.fi/∼erkkila2/. Furthermore, a web-application for DSection exists at http://informatics.systemsbiology.net/DSection.
Contact: timo.p.erkkila@tut.fi; harri.lahdesmaki@tut.fi
doi:10.1093/bioinformatics/btq406
PMCID: PMC2951082  PMID: 20631160
3.  Fewer permutations, more accurate P-values 
Bioinformatics  2009;25(12):i161-i168.
Motivation: Permutation tests have become a standard tool to assess the statistical significance of an event under investigation. The statistical significance, as expressed in a P-value, is calculated as the fraction of permutation values that are at least as extreme as the original statistic, which was derived from non-permuted data. This empirical method directly couples both the minimal obtainable P-value and the resolution of the P-value to the number of permutations. Thereby, it imposes upon itself the need for a very large number of permutations when small P-values are to be accurately estimated. This is computationally expensive and often infeasible.
Results: A method of computing P-values based on tail approximation is presented. The tail of the distribution of permutation values is approximated by a generalized Pareto distribution. A good fit and thus accurate P-value estimates can be obtained with a drastically reduced number of permutations when compared with the standard empirical way of computing P-values.
Availability: The Matlab code can be obtained from the corresponding author on request.
Contact: tknijnenburg@systemsbiology.org
Supplementary information:Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btp211
PMCID: PMC2687965  PMID: 19477983

Results 1-3 (3)