PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer 
Cancer cell  2013;23(2):186-199.
Summary
Integrated genomic analyses revealed a miRNA-regulatory network, which further defined a robust integrated mesenchymal subtype associated with poor overall survival in 459 cases of serous ovarian cancer (OvCa) from The Cancer Genome Atlas and 560 cases from independent cohorts. Eight key miRNAs, including miR-506, miR-141 and miR-200a, were predicted to regulate 89% of the targets in this network. Follow-up functional experiments illustrate that miR-506 augmented E-cadherin expression, inhibited cell migration and invasion, and prevented TGFβ-induced epithelial-mesenchymal transition (EMT) by targeting SNAI2, a transcriptional repressor of E-cadherin. In human OvCa, miR-506 expression was correlated with decreased SNAI2 and VIM, elevated E-cadherin, and beneficial prognosis. Nanoparticle delivery of miR-506 in orthotopic OvCa mouse models led to E-cadherin induction and reduced tumor growth.
doi:10.1016/j.ccr.2012.12.020
PMCID: PMC3603369  PMID: 23410973
2.  Integrated Analysis of Gene Expression and Tumor Nuclear Image Profiles Associated with Chemotherapy Response in Serous Ovarian Carcinoma 
PLoS ONE  2012;7(5):e36383.
Background
Small sample sizes used in previous studies result in a lack of overlap between the reported gene signatures for prediction of chemotherapy response. Although morphologic features, especially tumor nuclear morphology, are important for cancer grading, little research has been reported on quantitatively correlating cellular morphology with chemotherapy response, especially in a large data set. In this study, we have used a large population of patients to identify molecular and morphologic signatures associated with chemotherapy response in serous ovarian carcinoma.
Methodology/Principal Findings
A gene expression model that predicts response to chemotherapy is developed and validated using a large-scale data set consisting of 493 samples from The Cancer Genome Atlas (TCGA) and 244 samples from an Australian report. An identified 227-gene signature achieves an overall predictive accuracy of greater than 85% with a sensitivity of approximately 95% and specificity of approximately 70%. The gene signature significantly distinguishes between patients with unfavorable versus favorable prognosis, when applied to either an independent data set (P = 0.04) or an external validation set (P<0.0001). In parallel, we present the production of a tumor nuclear image profile generated from 253 sample slides by characterizing patients with nuclear features (such as size, elongation, and roundness) in incremental bins, and we identify a morphologic signature that demonstrates a strong association with chemotherapy response in serous ovarian carcinoma.
Conclusions
A gene signature discovered on a large data set provides robustness in accurately predicting chemotherapy response in serous ovarian carcinoma. The combination of the molecular and morphologic signatures yields a new understanding of potential mechanisms involved in drug resistance.
doi:10.1371/journal.pone.0036383
PMCID: PMC3348145  PMID: 22590536
3.  Insulin-like growth factor binding protein 2 promotes ovarian cancer cell invasion 
Molecular Cancer  2005;4:7.
Background
Insulin-like growth factor binding protein 2 (IGFBP2) is overexpressed in ovarian malignant tissues and in the serum and cystic fluid of ovarian cancer patients, suggesting an important role of IGFBP2 in the biology of ovarian cancer. The purpose of this study was to assess the role of increased IGFBP2 in ovarian cancer cells.
Results
Using western blotting and tissue microarray analyses, we showed that IGFBP2 was frequently overexpressed in ovarian carcinomas compared with normal ovarian tissues. Furthermore, IGFBP2 was significantly overexpressed in invasive serous ovarian carcinomas compared with borderline serous ovarian tumors. To test whether increased IGFBP2 contributes to the highly invasive nature of ovarian cancer cells, we generated IGFBP2-overexpressing cells from an SKOV3 ovarian cancer cell line, which has a very low level of endogenous IGFBP2. A Matrigel invasion assay showed that these IGFBP2-overexpressing cells were more invasive than the control cells. We then designed small interference RNA (siRNA) molecules that attenuated IGFBP2 expression in PA-1 ovarian cancer cells, which have a high level of endogenous IGFBP2. The Matrigel invasion assay showed that the attenuation of IGFBP2 expression indeed decreased the invasiveness of PA-1 cells.
Conclusions
We therefore showed that IGFBP2 enhances the invasion capacity of ovarian cancer cells. Blockage of IGFBP2 may thus constitute a viable strategy for targeted cancer therapy.
doi:10.1186/1476-4598-4-7
PMCID: PMC549074  PMID: 15686601

Results 1-3 (3)