PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Quantitative analysis of colony morphology in yeast 
BioTechniques  2014;56(1):18-27.
Microorganisms often form multicellular structures such as biofilms and structured colonies that can influence the organism’s virulence, drug resistance, and adherence to medical devices. Phenotypic classification of these structures has traditionally relied on qualitative scoring systems that limit detailed phenotypic comparisons between strains. Automated imaging and quantitative analysis have the potential to improve the speed and accuracy of experiments designed to study the genetic and molecular networks underlying different morphological traits. For this reason, we have developed a platform that uses automated image analysis and pattern recognition to quantify phenotypic signatures of yeast colonies. Our strategy enables quantitative analysis of individual colonies, measured at a single time point or over a series of time-lapse images, as well as the classification of distinct colony shapes based on image-derived features. Phenotypic changes in colony morphology can be expressed as changes in feature space trajectories over time, thereby enabling the visualization and quantitative analysis of morphological development. To facilitate data exploration, results are plotted dynamically through an interactive Yeast Image Analysis web application (YIMAA; http://yimaa.cs.tut.fi) that integrates the raw and processed images across all time points, allowing exploration of the image-based features and principal components associated with morphological development.
doi:10.2144/000114123
PMCID: PMC3996921  PMID: 24447135
colony morphology; image analysis; software; yeast; phenotype; time-lapse
2.  POMO - Plotting Omics analysis results for Multiple Organisms 
BMC Genomics  2013;14:918.
Background
Systems biology experiments studying different topics and organisms produce thousands of data values across different types of genomic data. Further, data mining analyses are yielding ranked and heterogeneous results and association networks distributed over the entire genome. The visualization of these results is often difficult and standalone web tools allowing for custom inputs and dynamic filtering are limited.
Results
We have developed POMO (http://pomo.cs.tut.fi), an interactive web-based application to visually explore omics data analysis results and associations in circular, network and grid views. The circular graph represents the chromosome lengths as perimeter segments, as a reference outer ring, such as cytoband for human. The inner arcs between nodes represent the uploaded network. Further, multiple annotation rings, for example depiction of gene copy number changes, can be uploaded as text files and represented as bar, histogram or heatmap rings. POMO has built-in references for human, mouse, nematode, fly, yeast, zebrafish, rice, tomato, Arabidopsis, and Escherichia coli. In addition, POMO provides custom options that allow integrated plotting of unsupported strains or closely related species associations, such as human and mouse orthologs or two yeast wild types, studied together within a single analysis. The web application also supports interactive label and weight filtering. Every iterative filtered result in POMO can be exported as image file and text file for sharing or direct future input.
Conclusions
The POMO web application is a unique tool for omics data analysis, which can be used to visualize and filter the genome-wide networks in the context of chromosomal locations as well as multiple network layouts. With the several illustration and filtering options the tool supports the analysis and visualization of any heterogeneous omics data analysis association results for many organisms. POMO is freely available and does not require any installation or registration.
doi:10.1186/1471-2164-14-918
PMCID: PMC3880012  PMID: 24365393
Omics; Association; Visualization; Ortholog; Phenolog; Genome-wide; Network; Model organism
3.  Fastbreak: a tool for analysis and visualization of structural variations in genomic data 
Genomic studies are now being undertaken on thousands of samples requiring new computational tools that can rapidly analyze data to identify clinically important features. Inferring structural variations in cancer genomes from mate-paired reads is a combinatorially difficult problem. We introduce Fastbreak, a fast and scalable toolkit that enables the analysis and visualization of large amounts of data from projects such as The Cancer Genome Atlas.
doi:10.1186/1687-4153-2012-15
PMCID: PMC3605143  PMID: 23046488
Cancer genomics; Structural variation; Translocation
4.  EPEPT: A web service for enhanced P-value estimation in permutation tests 
BMC Bioinformatics  2011;12:411.
Background
In computational biology, permutation tests have become a widely used tool to assess the statistical significance of an event under investigation. However, the common way of computing the P-value, which expresses the statistical significance, requires a very large number of permutations when small (and thus interesting) P-values are to be accurately estimated. This is computationally expensive and often infeasible. Recently, we proposed an alternative estimator, which requires far fewer permutations compared to the standard empirical approach while still reliably estimating small P-values [1].
Results
The proposed P-value estimator has been enriched with additional functionalities and is made available to the general community through a public website and web service, called EPEPT. This means that the EPEPT routines can be accessed not only via a website, but also programmatically using any programming language that can interact with the web. Examples of web service clients in multiple programming languages can be downloaded. Additionally, EPEPT accepts data of various common experiment types used in computational biology. For these experiment types EPEPT first computes the permutation values and then performs the P-value estimation. Finally, the source code of EPEPT can be downloaded.
Conclusions
Different types of users, such as biologists, bioinformaticians and software engineers, can use the method in an appropriate and simple way.
Availability
http://informatics.systemsbiology.net/EPEPT/
doi:10.1186/1471-2105-12-411
PMCID: PMC3277916  PMID: 22024252
5.  SEQADAPT: an adaptable system for the tracking, storage and analysis of high throughput sequencing experiments 
BMC Bioinformatics  2010;11:377.
Background
High throughput sequencing has become an increasingly important tool for biological research. However, the existing software systems for managing and processing these data have not provided the flexible infrastructure that research requires.
Results
Existing software solutions provide static and well-established algorithms in a restrictive package. However as high throughput sequencing is a rapidly evolving field, such static approaches lack the ability to readily adopt the latest advances and techniques which are often required by researchers. We have used a loosely coupled, service-oriented infrastructure to develop SeqAdapt. This system streamlines data management and allows for rapid integration of novel algorithms. Our approach also allows computational biologists to focus on developing and applying new methods instead of writing boilerplate infrastructure code.
Conclusion
The system is based around the Addama service architecture and is available at our website as a demonstration web application, an installable single download and as a collection of individual customizable services.
doi:10.1186/1471-2105-11-377
PMCID: PMC2916924  PMID: 20630057

Results 1-5 (5)