PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
author:("Shi, wenchuan")
1.  Methylation of FrzCD Defines a Discrete Step in the Developmental Program of Myxococcus xanthus 
Journal of Bacteriology  1998;180(21):5765-5768.
Myxococcus xanthus is a gram-negative soil bacterium which undergoes fruiting body formation during starvation. The frz signal transduction system has been found to play an important role in this process. FrzCD, a methyl-accepting taxis protein homologue, shows modulated methylation during cellular aggregation, which is thought to be part of an adaptation response to an aggregation signal. In this study, we assayed FrzCD methylation in many known and newly isolated mutants defective in fruiting body formation to determine a possible relationship between the methylation response and fruiting morphology. The results of our analysis indicated that the developmental mutants could be divided into two groups based on their ability to show normal FrzCD methylation during development. Many mutants blocked early in development, i.e., nonaggregating or abnormally aggregating mutants, showed poor FrzCD methylation. The well-characterized asg, bsg, csg, and esg mutants were found to be of this type. The defects in FrzCD methylation of these signaling mutants could be partially rescued by extracellular complementation with wild-type cells or addition of chemicals which restore their fruiting body formation. Mutants blocked in late development, i.e., translucent mounds, showed normal FrzCD methylation. Surprisingly, some mutants blocked in early development also exhibited a normal level of FrzCD methylation. The characterized mutants in this group were found to be defective in social motility. This indicates that FrzCD methylation defines a discrete step in the development of M. xanthus and that social motility mutants are not blocked in these early developmental steps.
PMCID: PMC107640  PMID: 9791131
2.  Chemotaxis in Borrelia burgdorferi 
Journal of Bacteriology  1998;180(2):231-235.
Borrelia burgdorferi is a motile spirochete which has been identified as the causative microorganism in Lyme disease. The physiological functions which govern the motility of this organism have not been elucidated. In this study, we found that motility of B. burgdorferi required an environment similar to interstitial fluid (e.g., pH 7.6 and 0.15 M NaCl). Several methods were used to detect and measure chemotaxis of B. burgdorferi. A number of chemical compounds and mixtures were surveyed for the ability to induce positive and negative chemotaxis of B. burgdorferi. Rabbit serum was found to be an attractant for B. burgdorferi, while ethanol and butanol were found to be repellents. Unlike some free-living spirochetes (e.g., Spirochaeta aurantia), B. burgdorferi did not exhibit any observable chemotaxis to common sugars or amino acids. A method was developed to produce spirochete cells with a self-entangled end. These cells enabled us to study the rotation of a single flagellar bundle in response to chemoattractants or repellents. The study shows that the frequency and duration for pausing of flagella are important for chemotaxis of B. burgdorferi.
PMCID: PMC106876  PMID: 9440510
3.  A DnaK Homolog in Myxococcus xanthus Is Involved in Social Motility and Fruiting Body Formation 
Journal of Bacteriology  1998;180(2):218-224.
Myxococcus xanthus is a gram-negative soil bacterium which exhibits a complex life cycle and social behavior. In this study, two developmental mutants of M. xanthus were isolated through Tn5 transposon mutagenesis. The mutants were found to be defective in cellular aggregation as well as in sporulation. Further phenotypic characterization indicated that the mutants were defective in social motility but normal in directed cell movements. Both mutations were cloned by a transposon-tagging method. Sequence analysis indicated that both insertions occurred in the same gene, which encodes a homolog of DnaK. Unlike the dnaK genes in other bacteria, this M. xanthus homolog appears not to be regulated by temperature or heat shock and is constitutively expressed during vegetative growth and under starvation. The defects of the mutants indicate that this DnaK homolog is important for the social motility and development of M. xanthus.
PMCID: PMC106874  PMID: 9440508

Results 1-3 (3)