PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
author:("Shi, wenchuan")
1.  Isolation and Characterization of a Suppressor Mutation that Restores Myxococcus xanthus Exopolysaccharide Production 
Microbiology (Reading, England)  2009;155(Pt 11):3599-3610.
SUMMARY
Myxococcus xanthus, a Gram-negative soil bacterium, undergoes multicellular development when nutrients become limiting. Aggregation, which is part of the developmental process, requires the surface motility of this organism. One component of M. xanthus motility, the social (S) gliding motility, enables the movement of cells in close physical proximity. Previous studies demonstrated that the cell-surface associated exopolysaccharide (EPS) is essential for S motility and the Dif proteins form a chemotaxis-like pathway that regulates EPS production in M. xanthus. DifA, a homologue of methyl-accepting chemotaxis proteins (MCPs) in the Dif system, is required for EPS production, S motility and development. In this study, a spontaneous extragenic suppressor of a difA deletion was isolated in order to identify additional regulators of EPS production. The suppressor mutation was found to be a single base-pair insertion in cheW7 at the che7 chemotaxis gene cluster. Further examination indicated that mutations in cheW7 may lead to the interaction of Mcp7 with DifC (CheW-like) and DifE (CheA-like) to reconstruct a functional pathway to regulate EPS production in the absence of DifA. In addition, the cheW7 mutation was found to partially suppress a pilA mutation in EPS production in a difA+ background. Further deletion of difA from the pilA cheW7 double mutant resulted in a triple mutant that produced wild-type levels of EPS, implying that DifA (MCP-like) and Mcp7 compete for interactions with DifC and DifE in the modulation of EPS production.
doi:10.1099/mic.0.031070-0
PMCID: PMC2879065  PMID: 19684067
2.  Isolation and characterization of a suppressor mutation that restores Myxococcus xanthus exopolysaccharide production 
Microbiology  2009;155(Pt 11):3599-3610.
Myxococcus xanthus, a Gram-negative soil bacterium, undergoes multicellular development when nutrients become limiting. Aggregation, which is part of the developmental process, requires the surface motility of this organism. One component of M. xanthus motility, the social (S) gliding motility, enables the movement of cells in close physical proximity. Previous studies demonstrated that the cell surface-associated exopolysaccharide (EPS) is essential for S motility and that the Dif proteins form a chemotaxis-like pathway that regulates EPS production in M. xanthus. DifA, a homologue of methyl-accepting chemotaxis proteins (MCPs) in the Dif system, is required for EPS production, S motility and development. In this study, a spontaneous extragenic suppressor of a difA deletion was isolated in order to identify additional regulators of EPS production. The suppressor mutation was found to be a single base pair insertion in cheW7 at the che7 chemotaxis gene cluster. Further examination indicated that mutations in cheW7 may lead to the interaction of Mcp7 with DifC (CheW-like) and DifE (CheA-like) to reconstruct a functional pathway to regulate EPS production in the absence of DifA. In addition, the cheW7 mutation was found to partially suppress a pilA mutation in EPS production in a difA+ background. Further deletion of difA from the pilA cheW7 double mutant resulted in a triple mutant that produced wild-type levels of EPS, implying that DifA (MCP-like) and Mcp7 compete for interactions with DifC and DifE in the modulation of EPS production.
doi:10.1099/mic.0.031070-0
PMCID: PMC2879065  PMID: 19684067
3.  A CheW Homologue Is Required for Myxococcus xanthus Fruiting Body Development, Social Gliding Motility, and Fibril Biogenesis 
Journal of Bacteriology  2002;184(20):5654-5660.
In bacteria with multiple sets of chemotaxis genes, the deletion of homologous genes or even different genes in the same operon can result in disparate phenotypes. Myxococcus xanthus is a bacterium with multiple sets of chemotaxis genes and/or homologues. It was shown previously that difA and difE, encoding homologues of the methyl-accepting chemoreceptor protein (MCP) and the CheA kinase, respectively, are required for M. xanthus social gliding (S) motility and development. Both difA and difE mutants were also defective in the biogenesis of the cell surface appendages known as extracellular matrix fibrils. In this study, we investigated the roles of the CheW homologue encoded by difC, a gene at the same locus as difA and difE. We showed that difC mutations resulted in defects in M. xanthus developmental aggregation, sporulation, and S motility. We demonstrated that difC is indispensable for wild-type cellular cohesion and fibril biogenesis but not for pilus production. We further illustrated the ectopic complementation of a difC in-frame deletion by a wild-type difC. The identical phenotypes of difA, difC, and difE mutants are consistent and supportive of the hypothesis that the Dif chemotaxis homologues constitute a chemotaxis-like signal transduction pathway that regulates M. xanthus fibril biogenesis and S motility.
doi:10.1128/JB.184.20.5654-5660.2002
PMCID: PMC139594  PMID: 12270823
4.  Myxococcus xanthus dif Genes Are Required for Biogenesis of Cell Surface Fibrils Essential for Social Gliding Motility 
Journal of Bacteriology  2000;182(20):5793-5798.
Myxococcus xanthus social (S) gliding motility has been previously reported by us to require the chemotaxis homologues encoded by the dif genes. In addition, two cell surface structures, type IV pili and extracellular matrix fibrils, are also critical to M. xanthus S motility. We have demonstrated here that M. xanthus dif genes are required for the biogenesis of fibrils but not for that of type IV pili. Furthermore, the developmental defects of dif mutants can be partially rescued by the addition of isolated fibril materials. Along with the chemotaxis genes of various swarming bacteria and the pilGHIJ genes of the twitching bacterium Pseudomonas aeruginosa, the M. xanthus dif genes belong to a unique class of bacterial chemotaxis genes or homologues implicated in the biogenesis of structures required for bacterial surface locomotion. Genetic studies indicate that the dif genes are linked to the M. xanthus dsp region, a locus known to be crucial for M. xanthus fibril biogenesis and S gliding.
PMCID: PMC94702  PMID: 11004179
5.  Methylation of FrzCD Defines a Discrete Step in the Developmental Program of Myxococcus xanthus 
Journal of Bacteriology  1998;180(21):5765-5768.
Myxococcus xanthus is a gram-negative soil bacterium which undergoes fruiting body formation during starvation. The frz signal transduction system has been found to play an important role in this process. FrzCD, a methyl-accepting taxis protein homologue, shows modulated methylation during cellular aggregation, which is thought to be part of an adaptation response to an aggregation signal. In this study, we assayed FrzCD methylation in many known and newly isolated mutants defective in fruiting body formation to determine a possible relationship between the methylation response and fruiting morphology. The results of our analysis indicated that the developmental mutants could be divided into two groups based on their ability to show normal FrzCD methylation during development. Many mutants blocked early in development, i.e., nonaggregating or abnormally aggregating mutants, showed poor FrzCD methylation. The well-characterized asg, bsg, csg, and esg mutants were found to be of this type. The defects in FrzCD methylation of these signaling mutants could be partially rescued by extracellular complementation with wild-type cells or addition of chemicals which restore their fruiting body formation. Mutants blocked in late development, i.e., translucent mounds, showed normal FrzCD methylation. Surprisingly, some mutants blocked in early development also exhibited a normal level of FrzCD methylation. The characterized mutants in this group were found to be defective in social motility. This indicates that FrzCD methylation defines a discrete step in the development of M. xanthus and that social motility mutants are not blocked in these early developmental steps.
PMCID: PMC107640  PMID: 9791131
6.  Chemotaxis in Borrelia burgdorferi 
Journal of Bacteriology  1998;180(2):231-235.
Borrelia burgdorferi is a motile spirochete which has been identified as the causative microorganism in Lyme disease. The physiological functions which govern the motility of this organism have not been elucidated. In this study, we found that motility of B. burgdorferi required an environment similar to interstitial fluid (e.g., pH 7.6 and 0.15 M NaCl). Several methods were used to detect and measure chemotaxis of B. burgdorferi. A number of chemical compounds and mixtures were surveyed for the ability to induce positive and negative chemotaxis of B. burgdorferi. Rabbit serum was found to be an attractant for B. burgdorferi, while ethanol and butanol were found to be repellents. Unlike some free-living spirochetes (e.g., Spirochaeta aurantia), B. burgdorferi did not exhibit any observable chemotaxis to common sugars or amino acids. A method was developed to produce spirochete cells with a self-entangled end. These cells enabled us to study the rotation of a single flagellar bundle in response to chemoattractants or repellents. The study shows that the frequency and duration for pausing of flagella are important for chemotaxis of B. burgdorferi.
PMCID: PMC106876  PMID: 9440510
7.  A DnaK Homolog in Myxococcus xanthus Is Involved in Social Motility and Fruiting Body Formation 
Journal of Bacteriology  1998;180(2):218-224.
Myxococcus xanthus is a gram-negative soil bacterium which exhibits a complex life cycle and social behavior. In this study, two developmental mutants of M. xanthus were isolated through Tn5 transposon mutagenesis. The mutants were found to be defective in cellular aggregation as well as in sporulation. Further phenotypic characterization indicated that the mutants were defective in social motility but normal in directed cell movements. Both mutations were cloned by a transposon-tagging method. Sequence analysis indicated that both insertions occurred in the same gene, which encodes a homolog of DnaK. Unlike the dnaK genes in other bacteria, this M. xanthus homolog appears not to be regulated by temperature or heat shock and is constitutively expressed during vegetative growth and under starvation. The defects of the mutants indicate that this DnaK homolog is important for the social motility and development of M. xanthus.
PMCID: PMC106874  PMID: 9440508

Results 1-7 (7)