PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
author:("Shi, wenchuan")
1.  In vitro communities derived from oral and gut microbial floras inhibit the growth of bacteria of foreign origins 
Microbial ecology  2010;60(3):665-676.
The gastrointestinal (GI) tract is home to trillions of microbes. Within the same GI tract substantial differences in the bacterial species that inhabit the oral cavity and intestinal tract have been noted. While the influence of host environments and nutritional availability in shaping different microbial communities is widely accepted, we hypothesize that the existing microbial flora also plays a role in selecting the bacterial species that are being integrated into the community. In this study, we used cultivable microbial communities isolated from different parts of the GI tract of mice (oral cavity and intestines) as a model system to examine this hypothesis. Microbes from these two areas were harvested and cultured using the same nutritional conditions, which led to two distinct microbial communities, each with about 20 different species as revealed by PCR-DGGE analysis. In vitro community competition assays showed that the two microbial floras exhibited antagonistic interactions towards each other. More interestingly, all the original isolates tested and their closely related species displayed striking community preferences: they persisted when introduced into the bacterial community of the same origin, while their viable count declined more than 3 orders of magnitude after 4 days of coincubation with the microbial flora of foreign origin. These results suggest that an existing microbial community might impose a selective pressure on incoming foreign bacterial species independent of host selection. The observed inter-flora interactions could contribute to the protective effect of established microbial communities against the integration of foreign bacteria to maintain the stability of the existing communities.
doi:10.1007/s00248-010-9711-9
PMCID: PMC2954289  PMID: 20625712
2.  Oral-derived bacterial flora defends its domain by recognizing and killing intruders---- a molecular analysis using Escherichia coli as a model intestinal bacterium 
Microbial ecology  2010;60(3):655-664.
Within the same human gastrointestinal (GI) tract, substantial differences in the bacterial species that inhabit oral cavity and intestinal tract have been noted. Previous research primarily attributed the differences to the influences of host environments and nutritional availabilities (“host habitat” effect). Our recent study indicated that, other than the host habitat effect, an existing microbial community could impose a selective pressure on incoming foreign bacterial species independent of host-mediated selection (“community selection” effect). In this study, we employed in vitro microbial floras representing microorganisms that inhabit the oral cavities and intestinal tract of mice in combination with Escherichia coli as a model intestinal bacterium and demonstrated that E. coli displays a striking community preference. It thrived when introduced into the intestinal microbial community, and survived poorly in the microbial flora of foreign origin (oral community). A more detailed examination of this phenomenon showed that the oral community produced oxygen free radicals in the presence of wild type E. coli while mutants deficient in lipopolysaccharides (LPS) did not trigger significant production of these cell damaging agents. Furthermore, mutants of E. coli defective in the oxidative stress response experienced a more drastic reduction in viability when co-cultivated with the oral flora, while the exogenous addition of the anti-oxidant vitamin C was able to rescue it. We concluded that the oral-derived microbial community senses the E. coli LPS and kills the bacterium with oxygen free radicals. This study reveals a new mechanism of community invasion resistance employed by established microflora to defend their domains.
doi:10.1007/s00248-010-9708-4
PMCID: PMC2954290  PMID: 20625713
3.  In Vitro Communities Derived from Oral and Gut Microbial Floras Inhibit the Growth of Bacteria of Foreign Origins 
Microbial Ecology  2010;60(3):665-676.
The gastrointestinal (GI) tract is home to trillions of microbes. Within the same GI tract, substantial differences in the bacterial species that inhabit the oral cavity and intestinal tract have been noted. While the influence of host environments and nutritional availability in shaping different microbial communities is widely accepted, we hypothesize that the existing microbial flora also plays a role in selecting the bacterial species that are being integrated into the community. In this study, we used cultivable microbial communities isolated from different parts of the GI tract of mice (oral cavity and intestines) as a model system to examine this hypothesis. Microbes from these two areas were harvested and cultured using the same nutritional conditions, which led to two distinct microbial communities, each with about 20 different species as revealed by PCR-based denaturing gradient gel electrophoresis analysis. In vitro community competition assays showed that the two microbial floras exhibited antagonistic interactions toward each other. More interestingly, all the original isolates tested and their closely related species displayed striking community preferences: They persisted when introduced into the bacterial community of the same origin, while their viable count declined more than three orders of magnitude after 4 days of coincubation with the microbial flora of foreign origin. These results suggest that an existing microbial community might impose a selective pressure on incoming foreign bacterial species independent of host selection. The observed inter-flora interactions could contribute to the protective effect of established microbial communities against the integration of foreign bacteria to maintain the stability of the existing communities.
Electronic supplementary material
The online version of this article (doi:10.1007/s00248-010-9711-9) contains supplementary material, which is available to authorized users.
doi:10.1007/s00248-010-9711-9
PMCID: PMC2954289  PMID: 20625712
4.  Oral-Derived Bacterial Flora Defends Its Domain by Recognizing and Killing Intruders—A Molecular Analysis Using Escherichia coli as a Model Intestinal Bacterium 
Microbial Ecology  2010;60(3):655-664.
Within the same human gastrointestinal tract, substantial differences in the bacterial species that inhabit oral cavity and intestinal tract have been noted. Previous research primarily attributed the differences to the influences of host environments and nutritional availabilities (“host habitat” effect). Our recent study indicated that, other than the host habitat effect, an existing microbial community could impose a selective pressure on incoming foreign bacterial species independent of host-mediated selection (“community selection” effect). In this study, we employed in vitro microbial floras representing microorganisms that inhabit the oral cavities and intestinal tract of mice in combination with Escherichia coli as a model intestinal bacterium and demonstrated that E. coli displays a striking community preference. It thrived when introduced into the intestinal microbial community and survived poorly in the microbial flora of foreign origin (oral community). A more detailed examination of this phenomenon showed that the oral community produced oxygen-free radicals in the presence of wild-type E. coli while mutants deficient in lipopolysaccharides (LPS) did not trigger significant production of these cell-damaging agents. Furthermore, mutants of E. coli defective in the oxidative stress response experienced a more drastic reduction in viability when cocultivated with the oral flora, while the exogenous addition of the antioxidant vitamin C was able to rescue it. We concluded that the oral-derived microbial community senses the E. coli LPS and kills the bacterium with oxygen-free radicals. This study reveals a new mechanism of community invasion resistance employed by established microflora to defend their domains.
Electronic supplementary material
The online version of this article (doi:10.1007/s00248-010-9708-4) contains supplementary material, which is available to authorized users.
doi:10.1007/s00248-010-9708-4
PMCID: PMC2954290  PMID: 20625713

Results 1-4 (4)