PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
author:("Shi, wenchuan")
1.  Characterization of aid1, a novel gene involved in Fusobacterium nucleatum interspecies interactions 
Microbial ecology  2014;68(2):379-387.
The oral opportunistic pathogen Fusobacterium nucleatum is known to interact with a large number of different bacterial species residing in the oral cavity. It adheres to a variety of Gram-positive bacteria, including oral streptococci via the arginine-inhibitable adhesin RadD. In this study, we describe a novel protein encoded by the predicted open reading frame FN1253 that appears to play a role in interspecies interactions of F. nucleatum, particularly with oral streptococci and related Gram-positive species. We designated FN1253 as aid1 (Adherence Inducing Determinant 1). Expression analyses demonstrated that this gene was induced in F. nucleatum single species biofilms, while the presence of representative members of the oral microbiota known to adhere to F. nucleatum triggered its suppression. Inactivation as well as overexpression of aid1 affected the ability of F. nucleatum to coaggregate with oral streptococci and the closely related Enterococcus faecalis, but not other Gram-positive oral species tested. Furthermore, overexpression of aid1 led to a drastic change in the structure of dual species biofilms of F. nucleatum with oral streptococci. Aid1 function was abolished in the presence of arginine and found to be dependent on RadD. Interestingly, differential expression of aid1 did not affect mRNA and protein levels of RadD. These findings indicate that RadD-mediated adhesion to oral streptococci involves more complex cellular processes than the simple interaction of adhesins on the surface of partner strains. Aid1 could potentially play an important role in facilitating RadD-mediated interaction with oral streptococci by increasing binding specificity of F. nucleatum to other microbial species.
doi:10.1007/s00248-014-0400-y
PMCID: PMC4104215  PMID: 24643713
F. nucleatum; oral streptococci; interspecies interaction; RadD
2.  Effects of Exopolysaccharide Production on Liquid Vegetative Growth, Stress Survival and Stationary Phase Recovery in Myxococcus xanthus 
Journal of microbiology (Seoul, Korea)  2012;50(2):10.1007/s12275-012-1349-5.
Exopolysaccharide (EPS) of Myxococcus xanthus is a well-regulated cell surface component. In addition to its known functions for social motility and fruiting body formation on solid surfaces, EPS has also been proposed to play a role in multi-cellular clumping in liquid medium, though this phenomenon has not been well studied. In this report, we confirmed that M. xanthus clumps formed in liquid were correlated with EPS levels and demonstrated that the EPS encased cell clumps exhibited biofilm-like structures. The clumps protected the cells at physiologically relevant EPS concentrations, while cells lacking EPS exhibited significant reduction in long-term viability and resistance to stressful conditions. However, excess EPS production was counterproductive to vegetative growth and viable cell recovery declined in extended late stationary phase as cells became trapped in the matrix of clumps. Therefore, optimal EPS production by M. xanthus is important for normal physiological functions in liquid.
doi:10.1007/s12275-012-1349-5
PMCID: PMC3819231  PMID: 22538652
Myxococcus xanthus; exopolysaccharide; vegetative growth; stress survival; stationary phase recovery
3.  DNA Builds and Strengthens the Extracellular Matrix in Myxococcus xanthus Biofilms by Interacting with Exopolysaccharides 
PLoS ONE  2012;7(12):e51905.
One intriguing discovery in modern microbiology is the extensive presence of extracellular DNA (eDNA) within biofilms of various bacterial species. Although several biological functions have been suggested for eDNA, including involvement in biofilm formation, the detailed mechanism of eDNA integration into biofilm architecture is still poorly understood. In the biofilms formed by Myxococcus xanthus, a Gram-negative soil bacterium with complex morphogenesis and social behaviors, DNA was found within both extracted and native extracellular matrices (ECM). Further examination revealed that these eDNA molecules formed well organized structures that were similar in appearance to the organization of exopolysaccharides (EPS) in ECM. Biochemical and image analyses confirmed that eDNA bound to and colocalized with EPS within the ECM of starvation biofilms and fruiting bodies. In addition, ECM containing eDNA exhibited greater physical strength and biological stress resistance compared to DNase I treated ECM. Taken together, these findings demonstrate that DNA interacts with EPS and strengthens biofilm structures in M. xanthus.
doi:10.1371/journal.pone.0051905
PMCID: PMC3530553  PMID: 23300576
4.  Transcriptional Profiles of Treponema denticola in Response to Environmental Conditions 
PLoS ONE  2010;5(10):e13655.
The periodontal pathogen T. denticola resides in a stressful environment rife with challenges, the human oral cavity. Knowledge of the stress response capabilities of this invasive spirochete is currently very limited. Whole genome expression profiles in response to different suspected stresses including heat shock, osmotic downshift, oxygen and blood exposure were examined. Most of the genes predicted to encode conserved heat shock proteins (HSPs) were found to be induced under heat and oxygen stress. Several of these HSPs also seem to be important for survival in hypotonic solutions and blood. In addition to HSPs, differential regulation of many genes encoding metabolic proteins, hypothetical proteins, transcriptional regulators and transporters was observed in patterns that could betoken functional associations. In summary, stress responses in T. denticola exhibit many similarities to the corresponding stress responses in other organisms but also employ unique components including the induction of hypothetical proteins.
doi:10.1371/journal.pone.0013655
PMCID: PMC2965109  PMID: 21048920
5.  Enhancement of Antimicrobial Activity against Pseudomonas aeruginosa by Coadministration of G10KHc and Tobramycinâ–ż  
Antimicrobial Agents and Chemotherapy  2006;50(11):3833-3838.
Pseudomonas aeruginosa is a common opportunistic human pathogen that is associated with life-threatening acute infections and chronic airway colonization during cystic fibrosis. Previously, we converted the wide-spectrum antimicrobial peptide novispirin G10 into a selectively-targeted antimicrobial peptide (STAMP), G10KHc. Compared to novispirin G10, the STAMP had an enhanced ability to kill Pseudomonas mendocina. In this study, we explored the activity of G10KHc against P. aeruginosa. G10KHc was found to be highly active (as active as tobramycin) against P. aeruginosa clinical isolates. Most interestingly, we observed a synergistic-like enhancement in killing activity when biofilms and planktonic cultures of P. aeruginosa were cotreated with G10KHc and tobramycin. The data indicate that the mechanism of enhanced activity may involve increased tobramycin uptake due to G10KHc-mediated cell membrane disruption. These results suggest that G10KHc may be useful against P. aeruginosa during acute and chronic infection states, especially when it is coadministered with tobramycin.
doi:10.1128/AAC.00509-06
PMCID: PMC1635211  PMID: 16940063

Results 1-5 (5)