PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
author:("Shi, wenchuan")
1.  Interactions between Periodontal Bacteria and Human Oral Epithelial Cells: Fusobacterium nucleatum Adheres to and Invades Epithelial Cells 
Infection and Immunity  2000;68(6):3140-3146.
Bacteria are causative agents of periodontal diseases. Interactions between oral bacteria and gingival epithelial cells are essential aspects of periodontal infections. Using an in vitro tissue culture model, a selected group of gram-negative anaerobic bacteria frequently associated with periodontal diseases, including Bacteroides forsythus, Campylobacter curvus, Eikenella corrodens, Fusobacterium nucleatum, Porphyromonas gingivalis, and Prevotella intermedia, were examined for their ability to adhere to and invade primary cultures of human gingival epithelial cells (HGEC). The effects of these bacteria on the production of interleukin-8 (IL-8), a proinflammatory chemokine, were also measured. These studies provided an initial demonstration that F. nucleatum adhered to and invaded HGEC and that this was accompanied by high levels of IL-8 secretion from the epithelial cells. The attachment and invasion characteristics of F. nucleatum were also tested using KB cells, an oral epithelial cell line. The invasion was verified by transmission electron microscopy and with metabolic inhibitors. Invasion appeared to occur via a “zipping” mechanism and required the involvement of actins, microtubules, signal transduction, protein synthesis, and energy metabolism of the epithelial cell, as well as protein synthesis by F. nucleatum. A spontaneous mutant, lam, of F. nucleatum, isolated as defective in autoagglutination, was unable to attach to or invade HGEC or KB cells, further indicating the requirement of bacterial components in these processes. Sugar inhibition assays indicated that lectin-like interactions were involved in the attachment of F. nucleatum to KB cells. Investigation of these new virulence phenotypes should improve our understanding of the role of F. nucleatum in periodontal infections.
PMCID: PMC97547  PMID: 10816455
2.  Induction of Apoptotic Cell Death in Peripheral Blood Mononuclear and Polymorphonuclear Cells by an Oral Bacterium, Fusobacterium nucleatum 
Infection and Immunity  2000;68(4):1893-1898.
It is largely unknown why a variety of bacteria present in the oral cavity are capable of establishing themselves in the periodontal pockets of nonimmunocompromised individuals in the presence of competent immune effector cells. In this paper we present evidence for the immunosuppressive role of Fusobacterium nucleatum, a gram-negative oral bacterium which plays an important role in the generation of periodontal disease. Our studies indicate that the immunosuppressive role of F. nucleatum is largely due to the ability of this organism to induce apoptotic cell death in peripheral blood mononuclear cells (PBMCs) and in polymorphonuclear cells (PMNs). F. nucleatum treatment induced apoptosis of PBMCs and PMNs as assessed by an increase in subdiploid DNA content determined by DNA fragmentation and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end-labeling assays. The ability of F. nucleatum to induce apoptosis was abolished by either heat treatment or proteinase digestion but was retained after formaldehyde treatment, suggesting that a heat-labile surface protein component is responsible for bacterium-mediated cell apoptosis. The data also indicated that F. nucleatum-induced cell apoptosis requires activation of caspases and is protected by NF-κB. Possible mechanisms of F. nucleatum's role in the pathogenesis of periodontal disease are discussed.
PMCID: PMC97363  PMID: 10722579

Results 1-2 (2)