PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
author:("Shi, wenchuan")
1.  Oligomerization of the Response Regulator ComE from Streptococcus mutans Is Affected by Phosphorylation 
Journal of Bacteriology  2012;194(5):1127-1135.
We have previously characterized the interactions of the response regulator ComE from Streptococcus mutans and DNA binding sites through DNase I footprinting and electrophoretic mobility shift assay analysis. Since response regulator functions are often affected by their phosphorylation state, we investigated how phosphorylation affects the biochemical function of ComE. Unlike many response regulators, we found that the phosphorylation state of ComE does not likely play a role in DNA binding affinity but rather seems to induce the formation of an oligomeric form of the protein. The role of this oligomerization state for ComE function is discussed.
doi:10.1128/JB.06565-11
PMCID: PMC3294772  PMID: 22210762
2.  Characterization of DNA Binding Sites of the ComE Response Regulator from Streptococcus mutans▿† 
Journal of Bacteriology  2011;193(14):3642-3652.
In Streptococcus mutans, both competence and bacteriocin production are controlled by ComC and the ComED two-component signal transduction system. Recent studies of S. mutans suggested that purified ComE binds to two 11-bp direct repeats in the nlmC-comC promoter region, where ComE activates nlmC and represses comC. In this work, quantitative binding studies and DNase I footprinting analysis were performed to calculate the equilibrium dissociation constant and further characterize the binding site of ComE. We found that ComE protects sequences inclusive of both direct repeats, has an equilibrium dissociation constant in the nanomolar range, and binds to these two direct repeats cooperatively. Furthermore, similar direct repeats were found upstream of cslAB, comED, comX, ftf, vicRKX, gtfD, gtfB, gtfC, and gbpB. Quantitative binding studies were performed on each of these sequences and showed that only cslAB has a similar specificity and high affinity for ComE as that seen with the upstream region of comC. A mutational analysis of the binding sequences showed that ComE does not require both repeats to bind DNA with high affinity, suggesting that single site sequences in the genome may be targets for ComE-mediated regulation. Based on the mutational analysis and DNase I footprinting analysis, we propose a consensus ComE binding site, TCBTAAAYSGT.
doi:10.1128/JB.00155-11
PMCID: PMC3133340  PMID: 21602345
3.  The response regulator ComE in Streptococcus mutans functions both as a transcription activator of mutacin production and repressor of CSP biosynthesis 
Microbiology (Reading, England)  2007;153(Pt 6):1799-1807.
In Streptococcus pneumoniae, competence and bacteriocin genes are controlled by two two-component systems, ComED and BlpRH, respectively. In Streptococcus mutans, both functions are controlled by the ComED system. Recent studies in S. mutans revealed a potential ComE binding site characterized by two 11 bp direct repeats shared by each of the bacteriocin genes responsive to the competence-stimulating peptide (CSP). Interestingly, this sequence was not found in the upstream region of the CSP structural gene comC. Since comC is suggested to be part of a CSP-responsive and ComE-dependent autoregulatory loop, it was of interest to determine how it was possible that the ComED system could simultaneously regulate bacteriocin expression and natural competence. Using the intergenic region IGS1499, shared by the CSP-responsive bacteriocin nlmC and comC, it was demonstrated that both genes are likely to be regulated by a bifunctional ComE. In a comE null mutant, comC gene expression was increased similarly to a fully induced wild-type. In contrast, nlmC gene expression was nearly abolished. Deletion of ComD exerted a similar effect on both genes to that observed with the comE null mutation. Electrophoretic mobility shift assays (EMSAs) with purified ComE revealed specific shift patterns dependent on the presence of one or both direct repeats in the nlmC–comC promoter region. The two direct repeats were also required for the promoter activity of both nlmC and comC. These results suggest that gene regulation of comC in S. mutans is fundamentally different from that reported for S. pneumoniae, which implicates a unique regulatory mechanism that allows the coordination of bacteriocin production with competence development.
doi:10.1099/mic.0.2007/005975-0
PMCID: PMC2062498  PMID: 17526837
4.  Mutation of luxS Affects Biofilm Formation in Streptococcus mutans  
Infection and Immunity  2003;71(4):1972-1979.
Quorum sensing is a bacterial mechanism for regulating gene expression in response to changes in population density. Many bacteria are capable of acyl-homoserine lactone-based or peptide-based intraspecies quorum sensing and luxS-dependent interspecies quorum sensing. While there is good evidence about the involvement of intraspecies quorum sensing in bacterial biofilm, little is known about the role of luxS in biofilm formation. In this study, we report for the first time that luxS-dependent quorum sensing is involved in biofilm formation of Streptococcus mutans. S. mutans is a major cariogenic bacterium in the multispecies bacterial biofilm commonly known as dental plaque. An ortholog of luxS for S. mutans was identified using the data available in the S. mutans genome project (http://www.genome.ou.edu/smutans.html). Using an assay developed for the detection of the LuxS-associated quorum sensing signal autoinducer 2 (AI-2), it was demonstrated that this ortholog was able to complement the luxS negative phenotype of Escherichia coli DH5α. It was also shown that AI-2 is indeed produced by S. mutans. AI-2 production is maximal during mid- to late-log growth in batch culture. Mutant strains devoid of the luxS gene were constructed and found to be defective in producing the AI-2 signal. There are also marked phenotypic differences between the wild type and the luxS mutants. Microscopic analysis of in vitro-grown biofilm structure revealed that the luxS mutant biofilms adopted a much more granular appearance, rather than the relatively smooth, confluent layer normally seen in the wild type. These results suggest that LuxS-dependent signal may play an important role in biofilm formation of S. mutans.
doi:10.1128/IAI.71.4.1972-1979.2003
PMCID: PMC152054  PMID: 12654815

Results 1-4 (4)