Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Perinatal Exposure to Traffic-Related Air Pollution and Atopy at 1 Year of Age in a Multi-Center Canadian Birth Cohort Study 
Environmental Health Perspectives  2015;123(9):902-908.
The role of traffic-related air pollution (TRAP) exposure in the development of allergic sensitization in children is unclear, and few birth cohort studies have incorporated spatiotemporal exposure assessment.
We aimed to examine the association between TRAP and atopy in 1-year-old children from an ongoing national birth cohort study in four Canadian cities.
We identified 2,477 children of approximately 1 year of age with assessment of atopy for inhalant (Alternaria, Der p, Der f, cat, dog, cockroach) and food-related (milk, eggs, peanuts, soy) allergens. Exposure to nitrogen dioxide (NO2) was estimated from city-specific land use regression models accounting for residential mobility and temporal variability in ambient concentrations. We used mixed models to examine associations between atopy and exposure during pregnancy and the first year of life, including adjustment for covariates (maternal atopy, socioeconomic status, pets, mold, nutrition). We also conducted analyses stratified by time-location patterns, daycare attendance, and modeled home ventilation.
Following spatiotemporal adjustment, TRAP exposure after birth increased the risk for development of atopy to any allergens [adjusted odds ratio (aOR) per 10 μg/m3 NO2 = 1.16; 95% CI: 1.00, 1.41], but not during pregnancy (aOR = 1.02; 95% CI: 0.86, 1.22). This association was stronger among children not attending daycare (aOR = 1.61; 95% CI: 1.28, 2.01) compared with daycare attendees (aOR = 1.05; 95% CI: 0.81, 1.28). Trends to increased risk were also found for food (aOR = 1.17; 95% CI: 0.95, 1.47) and inhalant allergens (aOR = 1.28; 95% CI: 0.93, 1.76).
Using refined exposure estimates that incorporated temporal variability and residential mobility, we found that traffic-related air pollution during the first year of life was associated with atopy.
Sbihi H, Allen RW, Becker A, Brook JR, Mandhane P, Scott JA, Sears MR, Subbarao P, Takaro TK, Turvey SE, Brauer M. 2015. Perinatal exposure to traffic-related air pollution and atopy at 1 year of age in a multi-center Canadian birth cohort study. Environ Health Perspect 123:902–908;
PMCID: PMC4559953  PMID: 25826816
2.  Exposure Assessment in Cohort Studies of Childhood Asthma 
Environmental Health Perspectives  2010;119(5):591-597.
The environment is suspected to play an important role in the development of childhood asthma. Cohort studies are a powerful observational design for studying exposure–response relationships, but their power depends in part upon the accuracy of the exposure assessment.
The purpose of this paper is to summarize and discuss issues that make accurate exposure assessment a challenge and to suggest strategies for improving exposure assessment in longitudinal cohort studies of childhood asthma and allergies.
Data synthesis
Exposures of interest need to be prioritized, because a single study cannot measure all potentially relevant exposures. Hypotheses need to be based on proposed mechanisms, critical time windows for effects, prior knowledge of physical, physiologic, and immunologic development, as well as genetic pathways potentially influenced by the exposures. Modifiable exposures are most important from the public health perspective. Given the interest in evaluating gene–environment interactions, large cohort sizes are required, and planning for data pooling across independent studies is critical. Collection of additional samples, possibly through subject participation, will permit secondary analyses. Models combining air quality, environmental, and dose data provide exposure estimates across large cohorts but can still be improved.
Exposure is best characterized through a combination of information sources. Improving exposure assessment is critical for reducing measurement error and increasing power, which increase confidence in characterization of children at risk, leading to improved health outcomes.
PMCID: PMC3094407  PMID: 21081299
childhood asthma; cohort studies; exposure assessment
3.  A Cohort Study of Traffic-Related Air Pollution and Mortality in Toronto, Ontario, Canada 
Environmental Health Perspectives  2009;117(5):772-777.
Chronic exposure to traffic-related air pollution (TRAP) may contribute to premature mortality, but few studies to date have addressed this topic.
In this study we assessed the association between TRAP and mortality in Toronto, Ontario, Canada.
We collected nitrogen dioxide samples over two seasons using duplicate two-sided Ogawa passive diffusion samplers at 143 locations across Toronto. We calibrated land use regressions to predict NO2 exposure on a fine scale within Toronto. We used interpolations to predict levels of particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5) and ozone levels. We assigned predicted pollution exposures to 2,360 subjects from a respiratory clinic, and abstracted health data on these subjects from medical billings, lung function tests, and diagnoses by pulmonologists. We tracked mortality between 1992 and 2002. We used standard and multilevel Cox proportional hazard models to test associations between air pollution and mortality.
After controlling for age, sex, lung function, obesity, smoking, and neighborhood deprivation, we observed a 17% increase in all-cause mortality and a 40% increase in circulatory mortality from an exposure contrast across the interquartile range of 4 ppb NO2. We observed no significant associations with other pollutants.
Exposure to TRAP was significantly associated with increased all-cause and circulatory mortality in this cohort. A high prevalence of cardiopulmonary disease in the cohort probably limits inference of the findings to populations with a substantial proportion of susceptible individuals.
PMCID: PMC2685840  PMID: 19479020
air pollution; GIS; mortality; nitrogen dioxide; traffic air pollution; Toronto

Results 1-3 (3)