PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Creating a tumor-resistant microenvironment 
Cell Cycle  2013;12(3):480-490.
Here, we provide the necessary proof of concept, that it is possible to metabolically create a non-permissive or “hostile” stromal microenvironment, which actively prevents tumor engraftment in vivo. We developed a novel genetically engineered fibroblast cell line that completely prevents tumor formation in mice, with a 100% protection rate. No host side effects were apparent. This could represent a viable cellular strategy for preventing and treating a variety of human cancers. More specifically, we examined the autocrine and paracrine effects of the cellular delivery of TNFα on breast cancer tumor growth and cancer metabolism. For this purpose, we recombinantly overexpressed TNFα in human breast cancer cells (MDA-MB-231) or human immortalized fibroblasts (hTERT-BJ1). Our results directly show that TNFα functions as a potent tumor suppressor. Remarkably, TNFα-expressing breast cancer cells were viable, without any significant increases in their basal apoptotic rate. However, after 4 weeks post-implantation, TNFα-expressing breast cancer cells failed to form any tumors in xenografted mice (0 tumors/10 injections), ultimately conferring 100% protection against tumorigenesis. Similarly, TNFα-overexpressing fibroblasts were also viable, without any increases in apoptosis. Significantly, complete tumor suppression was obtained by co-injecting TNFα expressing stromal fibroblasts with human breast cancer cells, indicating that paracrine cell-mediated delivery of TNFα can also prevent tumor engraftment and growth (0 tumors/10 injections). Mechanistically, TNFα induced autophagy and mitochondrial dysfunction in both epithelial cancer cells and stromal fibroblasts, preventing energy transfer from the tumor microenvironment, likely “starving” the cancer cells to death. In addition, via qRT-PCR analysis of MDA-MB-231 cells, we observed that TNFα mediated the upregulation of gene transcripts associated with inflammation and senescence [IL-1-β, IL-6, IL-8, MCP-1, COX-2, p21(WAF1/CIP1)] and downregulated known tumor-promoting genes (collagen VI and MMP2). Recombinant overexpression of TNFα receptor(s) in MDA-MB-231 cells also significantly reduced tumor growth, but was not as effective as the TNFα ligand itself in preventing tumor growth. Thus, we propose that stromal cell-mediated delivery of TNFα to human tumors [using transfected fibroblasts or mesenchymal stem cells (hMSCs)] may be a novel and effective strategy for the prevention and treatment of human cancers.
doi:10.4161/cc.23370
PMCID: PMC3587449  PMID: 23292149
tumor necrosis factor (TNF); cancer prevention; cellular therapy; fibroblast mediated delivery; mitochondrial dysfunction; breast cancer; tumor growth; tumor cell engraftment; autophagy; apoptosis
2.  Caveolin-1 promotes pancreatic cancer cell differentiation and restores membranous E-cadherin via suppression of the epithelial-mesenchymal transition 
Cell Cycle  2011;10(21):3692-3700.
Pancreatic cancer is one of the deadliest cancers due to early rapid metastasis and chemoresistance. Recently, epithelial to mesenchymal transition (EMT) was shown to play a key role in the pathogenesis of pancreatic cancer. To understand the role of caveolin-1 (Cav-1) in EMT, we overexpressed Cav-1 in a pancreatic cancer cell line, Panc 10.05, that does not normally express Cav-1. Here, we show that Cav-1 expression in pancreatic cancer cells induces an epithelial phenotype and promotes cell-cell contact, with increased expression of plasma membrane bound E-cadherin and β-catenin. Mechanistically, Cav-1 induces Snail downregulation and decreased activation of AKT, MAPK and TGFβ-Smad signaling pathways. In vitro, Cav-1 expression reduces cell migration and invasion, and attenuates doxorubicin-chemoresistance of pancreatic cancer cells. Importantly, in vivo studies revealed that Cav-1 expression greatly suppresses tumor formation in a xenograft model. Most interestingly, Panc/Cav-1 tumors displayed organized nests of differentiated cells that were totally absent in control tumors. Confirming our in vitro results, these nests of differentiated cells showed reexpression of E-cadherin and β-catenin at the cell membrane. Thus, we provide evidence that Cav-1 functions as a crucial modulator of EMT and cell differentiation in pancreatic cancer.
doi:10.4161/cc.10.21.17895
PMCID: PMC3266007  PMID: 22041584
caveolae; caveolin-1; epithelial-mesenchymal transition; E-cadherin; pancreatic cancer; cell differentiation; chemoresistance

Results 1-2 (2)