PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
2.  Nonparametric Regression With Missing Outcomes Using Weighted Kernel Estimating Equations 
We consider nonparametric regression of a scalar outcome on a covariate when the outcome is missing at random (MAR) given the covariate and other observed auxiliary variables. We propose a class of augmented inverse probability weighted (AIPW) kernel estimating equations for nonparametric regression under MAR. We show that AIPW kernel estimators are consistent when the probability that the outcome is observed, that is, the selection probability, is either known by design or estimated under a correctly specified model. In addition, we show that a specific AIPW kernel estimator in our class that employs the fitted values from a model for the conditional mean of the outcome given covariates and auxiliaries is double-robust, that is, it remains consistent if this model is correctly specified even if the selection probabilities are modeled or specified incorrectly. Furthermore, when both models happen to be right, this double-robust estimator attains the smallest possible asymptotic variance of all AIPW kernel estimators and maximally extracts the information in the auxiliary variables. We also describe a simple correction to the AIPW kernel estimating equations that while preserving double-robustness it ensures efficiency improvement over nonaugmented IPW estimation when the selection model is correctly specified regardless of the validity of the second model used in the augmentation term. We perform simulations to evaluate the finite sample performance of the proposed estimators, and apply the methods to the analysis of the AIDS Costs and Services Utilization Survey data. Technical proofs are available online.
doi:10.1198/jasa.2010.tm08463
PMCID: PMC3491912  PMID: 23144520
Asymptotics; Augmented kernel estimating equations; Double robustness; Efficiency; Inverse probability weighted kernel estimating equations; Kernel smoothing
3.  Evaluation of Viable Dynamic Treatment Regimes in a Sequentially Randomized Trial of Advanced Prostate Cancer 
We present new statistical analyses of data arising from a clinical trial designed to compare two-stage dynamic treatment regimes (DTRs) for advanced prostate cancer. The trial protocol mandated that patients were to be initially randomized among four chemotherapies, and that those who responded poorly were to be rerandomized to one of the remaining candidate therapies. The primary aim was to compare the DTRs’ overall success rates, with success defined by the occurrence of successful responses in each of two consecutive courses of the patient’s therapy. Of the one hundred and fifty study participants, forty seven did not complete their therapy per the algorithm. However, thirty five of them did so for reasons that precluded further chemotherapy; i.e. toxicity and/or progressive disease. Consequently, rather than comparing the overall success rates of the DTRs in the unrealistic event that these patients had remained on their assigned chemotherapies, we conducted an analysis that compared viable switch rules defined by the per-protocol rules but with the additional provision that patients who developed toxicity or progressive disease switch to a non-prespecified therapeutic or palliative strategy. This modification involved consideration of bivariate per-course outcomes encoding both efficacy and toxicity. We used numerical scores elicited from the trial’s Principal Investigator to quantify the clinical desirability of each bivariate per-course outcome, and defined one endpoint as their average over all courses of treatment. Two other simpler sets of scores as well as log survival time also were used as endpoints. Estimation of each DTR-specific mean score was conducted using inverse probability weighted methods that assumed that missingness in the twelve remaining drop-outs was informative but explainable in that it only depended on past recorded data. We conducted additional worst-best case analyses to evaluate sensitivity of our findings to extreme departures from the explainable drop-out assumption.
doi:10.1080/01621459.2011.641416
PMCID: PMC3433243  PMID: 22956855
Causal inference; Efficiency; Informative dropout; Inverse probability weighting; Marginal structural models; Optimal regime; Simultaneous confidence intervals

Results 1-3 (3)