PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Pre-synaptic regulation of astroglial excitatory neurotransmitter transporter GLT1 
Neuron  2009;61(6):880-894.
SUMMARY
The neuron-astrocyte synaptic complex is a fundamental operational unit of the nervous system. Astroglia play a central role in the regulation of synaptic glutamate, via neurotransmitter transport by GLT1/EAAT2. The astroglial mechanisms underlying this essential neuron-glial communication are not known. Here we show that presynaptic terminals are sufficient and necessary for GLT1/EAAT2 transcriptional activation and have identified the molecular pathway that regulates astroglial responses to presynaptic input. Presynaptic terminals regulate astroglial GLT1/EAAT2 via kappa B-motif binding phosphoprotein (KBBP), the mouse homologue of human heterogeneous nuclear ribonucleoprotein K (hnRNP K), which binds to an essential element of GLT1/EAAT2 promoter. This neuron-stimulated factor is required for GLT1/EATT2 transcriptional activation and is responsible for astroglial alterations in neural injury. Denervation of neuron-astrocyte signaling in vivo, by acute corticospinal tract transection, ricin-induced motor neuron death, or chronic neurodegeneration in amyotrophic lateral sclerosis (ALS) all result in reduced astroglial KBBP expression and transcriptional dysfunction of astroglial transporter expression. Our studies indicate that presynaptic elements dynamically coordinate normal astroglial function and also provide a fundamental signaling mechanism by which altered neuronal function and injury leads to dysregulated astroglia in CNS disease.
doi:10.1016/j.neuron.2009.02.010
PMCID: PMC2743171  PMID: 19323997
2.  Tumor necrosis factor-α modulates glutamate transport in the CNS and is a critical determinant of outcome from viral encephalomyelitis 
Brain research  2009;1263:143-154.
Neuroadapted Sindbis virus (NSV) is a neuronotropic virus that causes a fulminant encephalomyelitis in susceptible mice due to death of motor neurons in the brain and spinal cord. We and others have found that uninfected motor neurons die in response to NSV infection, at least in part due to disrupted astrocytic glutamate transport, resulting in excitotoxic motor neuron death. Here, we examined the mechanisms of astrocyte dysregulation associated with NSV infection. Treatment of organotypic slice cultures with NSV results in viral replication, cell death, altered astrocyte morphology, and the downregulation of the astrocytic glutamate transporter, GLT-1. We have found that TNF-α can mediate GLT-1 downregulation. Furthermore, TNF-α deficient mice infected with NSV exhibit neither GLT-1 downregulation nor neuronal death of brainstem and cervical spinal cord motor neurons and have markedly reduced mortality. These findings have implications for disease intervention and therapeutic development for the prevention of CNS damage associated with inflammatory responses.
doi:10.1016/j.brainres.2009.01.040
PMCID: PMC2952353  PMID: 19368827
Astrocyte; TNF-α; Motor neuron; GLT-1; Glutamate; Virus

Results 1-2 (2)