PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-1 (1)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Propentofylline-Induced Astrocyte Modulation Leads to Alterations in Glial Glutamate Promoter Activation Following Spinal Nerve Transection 
Neuroscience  2008;152(4):1086-1092.
We have previously shown that the atypical methylxanthine, propentofylline, reduces mechanical allodynia after peripheral nerve transection in a rodent model of neuropathy. In the present study, we sought to determine whether propentofylline-induced glial modulation alters spinal glutamate transporters, GLT-1 and GLAST in vivo, which may contribute to reduced behavioral hypersensitivity after nerve injury. In order to specifically examine the expression of the spinal glutamate transporters, a novel line of double transgenic GLT-1-eGFP/GLAST-DsRed promoter mice was used. Adult mice received propentofylline (10 mg/kg) or saline via intraperitoneal injection starting 1-hour prior to L5-spinal nerve transection and then daily for 12 days. Mice receiving saline exhibited punctate expression of both eGFP (GLT-1 promoter activation) and DsRed (GLAST promoter activation) in the dorsal horn of the spinal cord, which was decreased ipsilateral to nerve injury on day 12. Propentofylline administration reinstated promoter activation on the injured side as evidenced by an equal number of eGFP (GLT-1) and DsRed (GLAST) puncta in both dorsal horns. As demonstrated in previous studies, propentofylline induced a concomitant reversal of L5 spinal nerve transection-induced expression of Glial Fibrillary Acidic Protein (GFAP). The ability of propentofylline to alter glial glutamate transporters highlights the importance of controlling aberrant glial activation in neuropathic pain and suggests one possible mechanism for the anti-allodynic action of this drug.
doi:10.1016/j.neuroscience.2008.01.065
PMCID: PMC2423012  PMID: 18358622
Spinal glia; Neuropathic pain; Neuroimmune; Peripheral nerve injury; Mice

Results 1-1 (1)