Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)
Year of Publication
Document Types
1.  Molecular Comparison of GLT1+ and ALDH1L1+ Astrocytes In Vivo In Astroglial Reporter Mice 
Glia  2011;59(2):200-207.
Astrocyte heterogeneity remains largely unknown in the CNS due to lack of specific astroglial markers. In this study, molecular identity of in vivo astrocytes was characterized in BAC ALDH1L1 and BAC GLT1 eGFP promoter reporter transgenic mice. ALDH1L1 promoter is selectively activated in adult cortical and spinal cord astrocytes, indicated by the overlap of eGFP expression with ALDH1L1 and GFAP, but not with NeuN, APC, Olig2, IbaI, PDGFRα immunoreactivity in BAC ALDH1L1 eGFP reporter mice. Interestingly, ALDH1L1 expression levels (protein, mRNA, and promoter activity) in spinal cord were selectively decreased during postnatal maturation. In contrast, its expression was up-regulated in reactive astrocytes in both acute neural injury and chronic neurodegenerative (G93A mutant SOD1) conditions, similar to GFAP, but opposite of GLT1. ALDH1L1+ and GLT1+ cells isolated through fluorescence activated cell sorting (FACS) from BAC ALDH1L1 and BAC GLT1 eGFP mice share a highly similar gene expression profile, suggesting ALDH1L1 and GLT1 are co-expressed in the same population of astrocytes. This observation was further supported by overlap of the eGFP driven by the ALDH1L1 genomic promoter and the tdTomato driven by a 8.3kb EAAT2 promoter fragment in astrocytes of BAC ALDH1L1 eGFP X EAAT2-tdTomato mice. These studies support ALDH1L1 as a general CNS astroglial marker and investigated astrocyte heterogeneity in the CNS by comparing the molecular identity of the ALDH1L1+ and GLT1+ astrocytes from astroglial reporter mice. These astroglial reporter mice provide useful in vivo tools for the molecular analysis of astrocytes in physiological and pathological conditions.
PMCID: PMC3199134  PMID: 21046559
astroglia; BAC; ALDH1L1; GLT1; GFAP; oligodendroglia; ALS
2.  RNA Toxicity from the ALS/FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention 
Neuron  2013;80(2):415-428.
A hexanucleotide GGGGCC repeat expansion in the noncoding region of the C9ORF72 gene is the most common genetic abnormality in familial and sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The function of the C9ORF72 protein is unknown, as is the mechanism by which the repeat expansion could cause disease. Induced pluripotent stem cell (iPSC)-differentiated neurons from C9ORF72 ALS patients revealed disease-specific (1) intranuclear GGGGCCexp RNA foci, (2) dysregulated gene expression, (3) sequestration of GGGGCCexp RNA binding protein ADARB2, and (4) susceptibility to excitotoxicity. These pathological and pathogenic characteristics were confirmed in ALS brain and were mitigated with antisense oligonucleotide (ASO) therapeutics to the C9ORF72 transcript or repeat expansion despite the presence of repeat-associated non-ATG translation (RAN) products. These data indicate a toxic RNA gain-of-function mechanism as a cause of C9ORF72 ALS and provide candidate antisense therapeutics and candidate human pharmacodynamic markers for therapy.
PMCID: PMC4098943  PMID: 24139042
3.  Pre-synaptic regulation of astroglial excitatory neurotransmitter transporter GLT1 
Neuron  2009;61(6):880-894.
The neuron-astrocyte synaptic complex is a fundamental operational unit of the nervous system. Astroglia play a central role in the regulation of synaptic glutamate, via neurotransmitter transport by GLT1/EAAT2. The astroglial mechanisms underlying this essential neuron-glial communication are not known. Here we show that presynaptic terminals are sufficient and necessary for GLT1/EAAT2 transcriptional activation and have identified the molecular pathway that regulates astroglial responses to presynaptic input. Presynaptic terminals regulate astroglial GLT1/EAAT2 via kappa B-motif binding phosphoprotein (KBBP), the mouse homologue of human heterogeneous nuclear ribonucleoprotein K (hnRNP K), which binds to an essential element of GLT1/EAAT2 promoter. This neuron-stimulated factor is required for GLT1/EATT2 transcriptional activation and is responsible for astroglial alterations in neural injury. Denervation of neuron-astrocyte signaling in vivo, by acute corticospinal tract transection, ricin-induced motor neuron death, or chronic neurodegeneration in amyotrophic lateral sclerosis (ALS) all result in reduced astroglial KBBP expression and transcriptional dysfunction of astroglial transporter expression. Our studies indicate that presynaptic elements dynamically coordinate normal astroglial function and also provide a fundamental signaling mechanism by which altered neuronal function and injury leads to dysregulated astroglia in CNS disease.
PMCID: PMC2743171  PMID: 19323997
4.  Reticulon RTN2B Regulates Trafficking and Function of Neuronal Glutamate Transporter EAAC1* 
The Journal of biological chemistry  2007;283(10):6561-6571.
Excitatory amino acid transporters (EAATs) are the primary regulators of extracellular glutamate concentrations in the central nervous system. Their dysfunction may contribute to several neurological diseases. To date, five distinct mammalian glutamate transporters have been cloned. In brain, EAAC1 (excitatory amino acid carrier 1) is the primary neuronal glutamate transporter, localized on the perisynaptic membranes that are near release sites. Despite its potential importance in synaptic actions, little is known concerning the regulation of EAAC1 trafficking from the endoplasmic reticulum (ER) to the cell surface. Previously, we identified an EAAC1-associated protein, GTRAP3-18, an ER protein that prevents ER exit of EAAC1 when induced. Here we show that RTN2B, a member of the reticulon protein family that mainly localizes in the ER and ER exit sites interacts with EAAC1 and GTRAP3-18. EAAC1 and GTRAP3-18 bind to different regions of RTN2B. Each protein can separately and independently form complexes with EAAC1. RTN2B enhances ER exit and the cell surface composition of EAAC1 in heterologous cells. Expression of short interfering RNA-mediated knockdown of RTN2B decreases the EAAC1 protein level in neurons. Overall, our results suggest that RTN2B functions as a positive regulator in the delivery of EAAC1 from the ER to the cell surface. These studies indicate that transporter exit from the ER controlled by the interaction with its ER binding partner represents a critical regulatory step in glutamate transporter trafficking to the cell surface.
PMCID: PMC2581797  PMID: 18096700

Results 1-4 (4)