PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  β-III spectrin is critical for development of Purkinje cell dendritic tree and spine morphogenesis 
The Journal of Neuroscience  2011;31(46):16581-16590.
Mutations in the gene encoding β-III spectrin give rise to spinocerebellar ataxia type 5 (SCA5), a neurodegenerative disease characterized by progressive thinning of the molecular layer, loss of Purkinje cells and increasing motor deficits. A mouse lacking full-length β-III spectrin (β-III−/−) displays a similar phenotype. In vitro and in vivo analyses of Purkinje cells lacking β-III spectrin, reveal a critical role for β-III spectrin in Purkinje cell morphological development. Disruption of the normally well-ordered dendritic arborization occurs in Purkinje cells from β-III−/− mice, specifically showing a loss of monoplanar organization, smaller average dendritic diameter and reduced densities of Purkinje cell spines and synapses. Early morphological defects appear to affect distribution of dendritic, but not axonal, proteins. This study confirms that thinning of the molecular layer associated with disease pathogenesis is a consequence of Purkinje cell dendritic degeneration, as Purkinje cells from 8-month old β-III−/− mice have drastically reduced dendritic volumes, surface areas and total dendritic lengths compared to 5–6 week old β-III−/− mice. These findings highlight a critical role of β-III spectrin in dendritic biology and are consistent with an early developmental defect in β-III−/− mice, with abnormal Purkinje cell dendritic morphology potentially underlying disease pathogenesis.
doi:10.1523/JNEUROSCI.3332-11.2011
PMCID: PMC3374928  PMID: 22090485
2.  Loss of β-III spectrin leads to Purkinje cell dysfunction recapitulating the behaviour and neuropathology of SCA5 in humans 
Mutations in SPTBN2, the gene encoding β-III spectrin, cause spinocerebellar ataxia type 5 in humans (SCA5), a neurodegenerative disorder resulting in loss of motor coordination. How these mutations give rise to progressive ataxia and what the precise role β-III spectrin plays in normal cerebellar physiology are unknown. We developed a mouse lacking full length β-III spectrin and found that homozygous mice reproduced features of SCA5 including gait abnormalities, tremor, deteriorating motor coordination, Purkinje cell loss and cerebellar atrophy (molecular layer thinning). In vivo analysis reveals an age-related reduction in simple spike firing rate in surviving β-III−/− Purkinje cells while in vitro studies show these neurons to have reduced spontaneous firing, smaller sodium currents and dysregulation of glutamatergic neurotransmission. Our data suggest an early loss of EAAT4- (protein interactor of β-III spectrin) and subsequent loss of GLAST-mediated uptake may play a role in neuronal pathology. These findings implicate a loss of β-III spectrin function in SCA5 pathogenesis and indicate there are at least two physiological effects of β-III spectrin loss that underpin a progressive loss of inhibitory cerebellar output, namely an intrinsic Purkinje cell membrane defect due to reduced sodium currents and alterations in glutamate signaling.
doi:10.1523/JNEUROSCI.6065-09.2010
PMCID: PMC2857506  PMID: 20371805
ataxia; cerebellum; motor coordination; glutamate transporters; excitotoxicity; neurodegeneration

Results 1-2 (2)