PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Characterization of T cell phenotype and function in a double transgenic (collagen-specific TCR/HLA-DR1) humanized model of arthritis 
Introduction
T cells orchestrate joint inflammation in rheumatoid arthritis (RA), yet they are difficult to study due to the small numbers of antigen-specific cells. The goal of this study was to characterize a new humanized model of autoimmune arthritis and to describe the phenotypic and functional changes that occur in autoimmune T cells following the induction of pathological events.
Methods
We developed a double transgenic mouse containing both the HLA-DR1 transgene and an HLA-DR1-restricted collagen-specific TCR in order to obtain large numbers of antigen-specific T cells that can be used for immunologic studies.
Results
In vitro, CII-specific T cells from this mouse proliferated vigorously in response to the CII immunodominant peptide A2 and the cells altered their phenotype to become predominately CD62Llow and CD44high “activated” T cells. The response was accompanied by the production of Th1, Th2, and Th17-type cytokines. Following immunization with bovine CII/CFA, these mice develop an accelerated arthritis compared to single transgenic HLA-DR1 mice. On the other hand, when the mice were treated orally with the analog peptide A12, (a suppressive analog of collagen we have previously described), arthritis was significantly suppressed, despite the fact that >90% of the CD4+ T cells express the TCR Tg. In GALT tissues taken from the A12-treated mice, IL-2, IFN-γ, and IL-17 production to the autoimmune collagen determinant dropped while high levels of IL-10 and IL-4 were produced.
Conclusions
We have developed a humanized model of autoimmune arthritis that will be useful for the study of T cell directed therapies as well as T cell mediated mechanisms of autoimmune diseases.
doi:10.1186/ar4433
PMCID: PMC3978884  PMID: 24405551
2.  Characterization of inhibitory T cells induced by an analog of type II collagen in an HLA-DR1 humanized mouse model of autoimmune arthritis 
Arthritis Research & Therapy  2012;14(3):R107.
Introduction
We used DR1 transgenic mice and covalently linked DR1 multimers to characterize analog-specific inhibitory T cells in collagen-induced arthritis (CIA). Because of the low numbers of antigen-specific T cells in wild-type mice, functional T-cell studies in autoimmune arthritis have been challenging. The use of T-cell receptor (TCR) transgenic mice has provided useful information, but such T cells may not represent the heterogeneous T-cell response that occurs in natural settings. Our focus was to develop tools to identify and characterize the population of immunoregulatory T cells induced in wild-type mice by an analog peptide of CII259-273, which contains amino acid substitutions at positions 263 (N) and 266 (D) (analog peptide A12).
Methods
DR1 multimers, developed by loading empty class II molecules with exogenous peptide, provide a method for visualizing antigen-specific T cells with flow cytometry. However, the low binding avidity of A12 for the major histocompatibility complex (MHC) made this strategy untenable. To overcome this problem, we generated DR1 multimers in which the analog peptide A12 was covalently linked, hoping that the low-avidity analog would occupy enough binding clefts to allow detection of the responsive T cells.
Results
Staining with the tetramer revealed that A12-specific T cells were readily detectable at 10 days after immunization. These CD4(+) T cells are a highly selective subset of the TCR repertoire and have a limited clonality. Analysis of cytokine expression showed that cells detected by tetramer (A12) expressed primarily suppressive cytokines (interleukin-4 (IL-4) and IL-10) in response to collagen, compared with control cells. Although they did not express Fox-p3, they were extremely effective in preventing and suppressing inflammatory arthritis.
Conclusions
In summary, our studies showed that the use of covalently linked multimers allows characterization of analog-specific T cells that are otherwise difficult to detect. The suppressive character of the analog-specific T-cell response suggests that these cells attenuate autoimmunity and differ significantly in phenotype from the inflammatory T cells predominantly found in arthritic joints. Such reagents will become powerful tools to study T-cell responses in RA patients in upcoming clinical trials.
doi:10.1186/ar3832
PMCID: PMC3446484  PMID: 22569209

Results 1-2 (2)