PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Bistability of Mitochondrial Respiration Underlies Paradoxical Reactive Oxygen Species Generation Induced by Anoxia 
PLoS Computational Biology  2009;5(12):e1000619.
Increased production of reactive oxygen species (ROS) in mitochondria underlies major systemic diseases, and this clinical problem stimulates a great scientific interest in the mechanism of ROS generation. However, the mechanism of hypoxia-induced change in ROS production is not fully understood. To mathematically analyze this mechanism in details, taking into consideration all the possible redox states formed in the process of electron transport, even for respiratory complex III, a system of hundreds of differential equations must be constructed. Aimed to facilitate such tasks, we developed a new methodology of modeling, which resides in the automated construction of large sets of differential equations. The detailed modeling of electron transport in mitochondria allowed for the identification of two steady state modes of operation (bistability) of respiratory complex III at the same microenvironmental conditions. Various perturbations could induce the transition of respiratory chain from one steady state to another. While normally complex III is in a low ROS producing mode, temporal anoxia could switch it to a high ROS producing state, which persists after the return to normal oxygen supply. This prediction, which we qualitatively validated experimentally, explains the mechanism of anoxia-induced cell damage. Recognition of bistability of complex III operation may enable novel therapeutic strategies for oxidative stress and our method of modeling could be widely used in systems biology studies.
Author Summary
The levels of reactive oxygen species (ROS) that are generated as a side product of mitochondrial respiratory electron transport largely define the extent of oxidative stress in living cells. Free radicals formed in electron transport, such as ubisemiquinone, could pass their non-paired electron directly to oxygen, thus producing superoxide radical that gives rise to a variety of ROS. It is well known in clinical practice that upon recommencing oxygen supply after anoxia a tissue produces much more ROS than before the anoxia, and the state of high ROS production is stable. The mechanism of switching from low to high ROS production by temporal anoxia was unknown, in part because of the lack of detailed mathematical description of hundreds of redox states of respiratory complexes, which are formed in the process of electron transport. A new methodology of automated construction of large systems of differential equations allowed us to describe the system in detail and predicts that the mechanism of paradoxical effect of anoxia-reoxygenation could be defined by the properties of complex III of mitochondrial respiratory chain. Our experiments confirmed that the effect of hypoxia-reoxygenation is confined by intramitochondrial processes since it is observed in isolated mitochondria.
doi:10.1371/journal.pcbi.1000619
PMCID: PMC2789320  PMID: 20041200
2.  The Role of External and Matrix pH in Mitochondrial Reactive Oxygen Species Generation* 
The Journal of Biological Chemistry  2008;283(43):29292-29300.
Reactive oxygen species (ROS) generation in mitochondria as a side product of electron and proton transport through the inner membrane is important for normal cell operation as well as development of pathology. Matrix and cytosol alkalization stabilizes semiquinone radical, a potential superoxide producer, and we hypothesized that proton deficiency under the excess of electron donors enhances reactive oxygen species generation. We tested this hypothesis by measuring pH dependence of reactive oxygen species released by mitochondria. The experiments were performed in the media with pH varying from 6 to 8 in the presence of complex II substrate succinate or under more physiological conditions with complex I substrates glutamate and malate. Matrix pH was manipulated by inorganic phosphate, nigericine, and low concentrations of uncoupler or valinomycin. We found that high pH strongly increased the rate of free radical generation in all of the conditions studied, even when ΔpH = 0 in the presence of nigericin. In the absence of inorganic phosphate, when the matrix was the most alkaline, pH shift in the medium above 7 induced permeability transition accompanied by the decrease of ROS production. ROS production increase induced by the alkalization of medium was observed with intact respiring mitochondria as well as in the presence of complex I inhibitor rotenone, which enhanced reactive oxygen species release. The phenomena revealed in this report are important for understanding mechanisms governing mitochondrial production of reactive oxygen species, in particular that related with uncoupling proteins.
doi:10.1074/jbc.M801019200
PMCID: PMC2570889  PMID: 18687689

Results 1-2 (2)