PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None
Journals
Year of Publication
1.  Chronic Obstructive Pulmonary Disease heterogeneity: challenges for health risk assessment, stratification and management 
Journal of Translational Medicine  2014;12(Suppl 2):S3.
Background and hypothesis
Heterogeneity in clinical manifestations and disease progression in Chronic Obstructive Pulmonary Disease (COPD) lead to consequences for patient health risk assessment, stratification and management. Implicit with the classical "spill over" hypothesis is that COPD heterogeneity is driven by the pulmonary events of the disease. Alternatively, we hypothesized that COPD heterogeneities result from the interplay of mechanisms governing three conceptually different phenomena: 1) pulmonary disease, 2) systemic effects of COPD and 3) co-morbidity clustering, each of them with their own dynamics.
Objective and method
To explore the potential of a systems analysis of COPD heterogeneity focused on skeletal muscle dysfunction and on co-morbidity clustering aiming at generating predictive modeling with impact on patient management. To this end, strategies combining deterministic modeling and network medicine analyses of the Biobridge dataset were used to investigate the mechanisms of skeletal muscle dysfunction. An independent data driven analysis of co-morbidity clustering examining associated genes and pathways was performed using a large dataset (ICD9-CM data from Medicare, 13 million people). Finally, a targeted network analysis using the outcomes of the two approaches (skeletal muscle dysfunction and co-morbidity clustering) explored shared pathways between these phenomena.
Results
(1) Evidence of abnormal regulation of skeletal muscle bioenergetics and skeletal muscle remodeling showing a significant association with nitroso-redox disequilibrium was observed in COPD; (2) COPD patients presented higher risk for co-morbidity clustering than non-COPD patients increasing with ageing; and, (3) the on-going targeted network analyses suggests shared pathways between skeletal muscle dysfunction and co-morbidity clustering.
Conclusions
The results indicate the high potential of a systems approach to address COPD heterogeneity. Significant knowledge gaps were identified that are relevant to shape strategies aiming at fostering 4P Medicine for patients with COPD.
doi:10.1186/1479-5876-12-S2-S3
PMCID: PMC4255905  PMID: 25472887
Chronic diseases; COPD; Disease heterogeneity; Integrated Care; Predictive Medicine; Redox disequilibrium; Systems Medicine; VO2max
2.  Systems Medicine: from molecular features and models to the clinic in COPD 
Journal of Translational Medicine  2014;12(Suppl 2):S4.
Background and hypothesis
Chronic Obstructive Pulmonary Disease (COPD) patients are characterized by heterogeneous clinical manifestations and patterns of disease progression. Two major factors that can be used to identify COPD subtypes are muscle dysfunction/wasting and co-morbidity patterns. We hypothesized that COPD heterogeneity is in part the result of complex interactions between several genes and pathways. We explored the possibility of using a Systems Medicine approach to identify such pathways, as well as to generate predictive computational models that may be used in clinic practice.
Objective and method
Our overarching goal is to generate clinically applicable predictive models that characterize COPD heterogeneity through a Systems Medicine approach. To this end we have developed a general framework, consisting of three steps/objectives: (1) feature identification, (2) model generation and statistical validation, and (3) application and validation of the predictive models in the clinical scenario. We used muscle dysfunction and co-morbidity as test cases for this framework.
Results
In the study of muscle wasting we identified relevant features (genes) by a network analysis and generated predictive models that integrate mechanistic and probabilistic models. This allowed us to characterize muscle wasting as a general de-regulation of pathway interactions. In the co-morbidity analysis we identified relevant features (genes/pathways) by the integration of gene-disease and disease-disease associations. We further present a detailed characterization of co-morbidities in COPD patients that was implemented into a predictive model. In both use cases we were able to achieve predictive modeling but we also identified several key challenges, the most pressing being the validation and implementation into actual clinical practice.
Conclusions
The results confirm the potential of the Systems Medicine approach to study complex diseases and generate clinically relevant predictive models. Our study also highlights important obstacles and bottlenecks for such approaches (e.g. data availability and normalization of frameworks among others) and suggests specific proposals to overcome them.
doi:10.1186/1479-5876-12-S2-S4
PMCID: PMC4255907  PMID: 25471042
Chronic diseases; COPD; Disease heterogeneity; Systems Medicine; Predictive Modeling; Co-morbidity
3.  The COPD Knowledge Base: enabling data analysis and computational simulation in translational COPD research 
Journal of Translational Medicine  2014;12(Suppl 2):S6.
Background
Previously we generated a chronic obstructive pulmonary disease (COPD) specific knowledge base (http://www.copdknowledgebase.eu) from clinical and experimental data, text-mining results and public databases. This knowledge base allowed the retrieval of specific molecular networks together with integrated clinical and experimental data.
Results
The COPDKB has now been extended to integrate over 40 public data sources on functional interaction (e.g. signal transduction, transcriptional regulation, protein-protein interaction, gene-disease association). In addition we integrated COPD-specific expression and co-morbidity networks connecting over 6 000 genes/proteins with physiological parameters and disease states. Three mathematical models describing different aspects of systemic effects of COPD were connected to clinical and experimental data. We have completely redesigned the technical architecture of the user interface and now provide html and web browser-based access and form-based searches. A network search enables the use of interconnecting information and the generation of disease-specific sub-networks from general knowledge. Integration with the Synergy-COPD Simulation Environment enables multi-scale integrated simulation of individual computational models while integration with a Clinical Decision Support System allows delivery into clinical practice.
Conclusions
The COPD Knowledge Base is the only publicly available knowledge resource dedicated to COPD and combining genetic information with molecular, physiological and clinical data as well as mathematical modelling. Its integrated analysis functions provide overviews about clinical trends and connections while its semantically mapped content enables complex analysis approaches. We plan to further extend the COPDKB by offering it as a repository to publish and semantically integrate data from relevant clinical trials. The COPDKB is freely available after registration at http://www.copdknowledgebase.eu.
doi:10.1186/1479-5876-12-S2-S6
PMCID: PMC4255911  PMID: 25471253
4.  A systems biology approach reveals a link between systemic cytokines and skeletal muscle energy metabolism in a rodent smoking model and human COPD 
Genome Medicine  2014;6(8):59.
Background
A relatively large percentage of patients with chronic obstructive pulmonary disease (COPD) develop systemic co-morbidities that affect prognosis, among which muscle wasting is particularly debilitating. Despite significant research effort, the pathophysiology of this important extrapulmonary manifestation is still unclear. A key question that remains unanswered is to what extent systemic inflammatory mediators might play a role in this pathology.
Cigarette smoke (CS) is the main risk factor for developing COPD and therefore animal models chronically exposed to CS have been proposed for mechanistic studies and biomarker discovery. Although mice have been successfully used as a pre-clinical in vivo model to study the pulmonary effects of acute and chronic CS exposure, data suggest that they may be inadequate models for studying the effects of CS on peripheral muscle function. In contrast, recent findings indicate that the guinea pig model (Cavia porcellus) may better mimic muscle wasting.
Methods
We have used a systems biology approach to compare the transcriptional profile of hindlimb skeletal muscles from a Guinea pig rodent model exposed to CS and/or chronic hypoxia to COPD patients with muscle wasting.
Results
We show that guinea pigs exposed to long-term CS accurately reflect most of the transcriptional changes observed in dysfunctional limb muscle of severe COPD patients when compared to matched controls. Using network inference, we could then show that the expression profile in whole lung of genes encoding for soluble inflammatory mediators is informative of the molecular state of skeletal muscles in the guinea pig smoking model. Finally, we show that CXCL10 and CXCL9, two of the candidate systemic cytokines identified using this pre-clinical model, are indeed detected at significantly higher levels in serum of COPD patients, and that their serum protein level is inversely correlated with the expression of aerobic energy metabolism genes in skeletal muscle.
Conclusions
We conclude that CXCL10 and CXCL9 are promising candidate inflammatory signals linked to the regulation of central metabolism genes in skeletal muscles. On a methodological level, our work also shows that a system level analysis of animal models of diseases can be very effective to generate clinically relevant hypothesis.
Electronic supplementary material
The online version of this article (doi:10.1186/s13073-014-0059-5) contains supplementary material, which is available to authorized users.
doi:10.1186/s13073-014-0059-5
PMCID: PMC4165371  PMID: 25228925
5.  A Systems Biology Approach Identifies Molecular Networks Defining Skeletal Muscle Abnormalities in Chronic Obstructive Pulmonary Disease 
PLoS Computational Biology  2011;7(9):e1002129.
Chronic Obstructive Pulmonary Disease (COPD) is an inflammatory process of the lung inducing persistent airflow limitation. Extensive systemic effects, such as skeletal muscle dysfunction, often characterize these patients and severely limit life expectancy. Despite considerable research efforts, the molecular basis of muscle degeneration in COPD is still a matter of intense debate. In this study, we have applied a network biology approach to model the relationship between muscle molecular and physiological response to training and systemic inflammatory mediators. Our model shows that failure to co-ordinately activate expression of several tissue remodelling and bioenergetics pathways is a specific landmark of COPD diseased muscles. Our findings also suggest that this phenomenon may be linked to an abnormal expression of a number of histone modifiers, which we discovered correlate with oxygen utilization. These observations raised the interesting possibility that cell hypoxia may be a key factor driving skeletal muscle degeneration in COPD patients.
Author Summary
Chronic Obstructive Pulmonary Disease (COPD) is a major life threatening disease of the lungs, characterized by airflow limitation and chronic inflammation. Progressive reduction of the body muscle mass is a condition linked to COPD that significantly decreases quality of life and survival. Physical exercise has been proposed as a therapeutic option but its utility is still a matter of debate. The mechanisms underlying muscle wasting are also still largely unknown. The results presented in this paper show that diseased muscles are largely unable to coordinate the expression of muscle remodelling and bioenergetics pathways and that the cause of this phenomena may be tissue hypoxia. These findings contrast with current hypotheses based on the role of chronic inflammation and show that a mechanism based on an oxygen driven, epigenetic control of these two important functions may be an important disease mechanism.
doi:10.1371/journal.pcbi.1002129
PMCID: PMC3164707  PMID: 21909251
6.  Knowledge management for systems biology a general and visually driven framework applied to translational medicine 
BMC Systems Biology  2011;5:38.
Background
To enhance our understanding of complex biological systems like diseases we need to put all of the available data into context and use this to detect relations, pattern and rules which allow predictive hypotheses to be defined. Life science has become a data rich science with information about the behaviour of millions of entities like genes, chemical compounds, diseases, cell types and organs, which are organised in many different databases and/or spread throughout the literature. Existing knowledge such as genotype - phenotype relations or signal transduction pathways must be semantically integrated and dynamically organised into structured networks that are connected with clinical and experimental data. Different approaches to this challenge exist but so far none has proven entirely satisfactory.
Results
To address this challenge we previously developed a generic knowledge management framework, BioXM™, which allows the dynamic, graphic generation of domain specific knowledge representation models based on specific objects and their relations supporting annotations and ontologies. Here we demonstrate the utility of BioXM for knowledge management in systems biology as part of the EU FP6 BioBridge project on translational approaches to chronic diseases. From clinical and experimental data, text-mining results and public databases we generate a chronic obstructive pulmonary disease (COPD) knowledge base and demonstrate its use by mining specific molecular networks together with integrated clinical and experimental data.
Conclusions
We generate the first semantically integrated COPD specific public knowledge base and find that for the integration of clinical and experimental data with pre-existing knowledge the configuration based set-up enabled by BioXM reduced implementation time and effort for the knowledge base compared to similar systems implemented as classical software development projects. The knowledgebase enables the retrieval of sub-networks including protein-protein interaction, pathway, gene - disease and gene - compound data which are used for subsequent data analysis, modelling and simulation. Pre-structured queries and reports enhance usability; establishing their use in everyday clinical settings requires further simplification with a browser based interface which is currently under development.
doi:10.1186/1752-0509-5-38
PMCID: PMC3060864  PMID: 21375767

Results 1-6 (6)