Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Some Listeria monocytogenes Outbreak Strains Demonstrate Significantly Reduced Invasion, inlA Transcript Levels, and Swarming Motility In Vitro▿  
Applied and Environmental Microbiology  2009;75(17):5647-5658.
Listeria monocytogenes can cause a severe invasive food-borne disease known as listeriosis, and large outbreaks of this disease occur occasionally. Based on molecular-subtype data, epidemic clone (EC) strains have been defined, including ECI and ECIa, which have caused listeriosis outbreaks on different continents. While a number of molecular-subtyping studies of outbreak strains have been reported, few comprehensive data sets of virulence-associated characteristics of these strains are available. We assembled a set of human clinical isolates from 15 outbreaks that occurred worldwide between 1975 and 2002. Initial characterization of these strains showed significant variation in the ability to invade human Caco-2 intestinal epithelial cells and HepG2 hepatic cells; four strains showed consistently reduced invasion in both cell lines. DNA sequencing of inlA, which encodes a protein required for efficient Caco-2 and HepG2 invasion, showed that none of the invasion-attenuated strains contained known virulence-attenuating mutations in inlA. Phylogenetic analyses of inlA sequences revealed a well-supported clade containing a fully invasive ECI strain and three invasion-attenuated ECI strains, along with a fully invasive ECIa strain and an invasion-attenuated ECIa strain. Of the four invasion-attenuated strains, one strain showed both reduced inlA transcript levels and impaired swarming, one strain showed reduced inlA transcript levels, and two strains showed reduced swarming. Overall, our data show that (i) L. monocytogenes strains from outbreaks vary significantly in invasion efficiency and (ii) different mechanisms may contribute to reduced invasion efficiency. Association between EC strains and listeriosis outbreaks may involve characteristics other than virulence phenotypes, including survival and growth in food-associated environments.
PMCID: PMC2737929  PMID: 19581477
2.  Risk of Gastrointestinal Disease Associated with Exposure to Pathogens in the Sediments of the Lower Passaic River▿  
High levels of pathogenic microorganisms have been documented previously in waters of the Lower Passaic River in northern New Jersey. The purpose of this study was to characterize the microbial contamination of river sediments near combined sewer overflows (CSOs), a known source of pathogens. Concentrations of fecal coliform, total coliform, fecal Streptococcus, fecal Enterococcus, Pseudomonas aeruginosa, Staphylococcus aureus, Giardia lamblia, and Cryptosporidium parvum organisms were measured in 16 samples from three mudflat locations along the Lower Passaic River, as well as from an upstream location. Selected samples were also analyzed for antibiotic resistance. All of the samples contained high concentrations of total coliform, fecal coliform, fecal Streptococcus, and fecal Enterococcus organisms. Analysis of isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli from several samples indicated that each strain was resistant to at least one antibiotic typically used in clinical settings. Eight of 16 samples contained Giardia, and one sample contained Cryptosporidium. With these sampling data, a quantitative microbial risk assessment was conducted to evaluate the probability of infection or illness resulting from incidental ingestion of contaminated sediments over a 1-year period. Three potential exposure scenarios were considered: visitor, recreator, and homeless person. Single-event risk was first evaluated for the three individual exposure scenarios; overall risk was then determined over a 1-year period using Monte Carlo techniques to characterize uncertainty. For fecal Streptococcus and Enterococcus, annualized risk estimates for gastrointestinal illness ranged from approximately 0.42 to 0.53 for recreators, 0.07 to 0.10 for visitors, and 0.62 to 0.72 for homeless individuals across the three sampling locations. Annualized risk of Giardia infection ranged from 0.14 to 0.64 for recreators, 0.01 to 0.1 for visitors, and 0.30 to 0.87 for homeless individuals, across all locations where detected. Cryptosporidium was detected at one location, and the corresponding annualized risk of infection was 0.32, 0.05, and 0.51 for recreators, visitors, and homeless individuals, respectively. This risk assessment suggests that pathogen-contaminated sediments near areas of CSO discharge in the Lower Passaic River could pose a health risk to individuals coming into contact with sediments in the mudflat areas.
PMCID: PMC2258560  PMID: 18156335

Results 1-2 (2)