Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Acetyl-coenzyme A synthesis from methyltetrahydrofolate, CO, and coenzyme A by enzymes purified from Clostridium thermoaceticum: attainment of in vivo rates and identification of rate-limiting steps. 
Journal of Bacteriology  1992;174(14):4667-4676.
Many anaerobic bacteria fix CO2 via the acetyl-coenzyme A (CoA) (Wood) pathway. Carbon monoxide dehydrogenase (CODH), a corrinoid/iron-sulfur protein (C/Fe-SP), methyltransferase (MeTr), and an electron transfer protein such as ferredoxin II play pivotal roles in the conversion of methyltetrahydrofolate (CH3-H4folate), CO, and CoA to acetyl-CoA. In the study reported here, our goals were (i) to optimize the method for determining the activity of the synthesis of acetyl-CoA, (ii) to evaluate how closely the rate of synthesis of acetyl-CoA by purified enzymes approaches the rate at which whole cells synthesize acetate, and (iii) to determine which steps limit the rate of acetyl-CoA synthesis. In this study, CODH, MeTr, C/Fe-SP, and ferredoxin were purified from Clostridium thermoaceticum to apparent homogeneity. We optimized conditions for studying the synthesis of acetyl-CoA and found that when the reaction is dependent upon MeTr, the rate is 5.3 mumol min-1 mg-1 of MeTr. This rate is approximately 10-fold higher than that reported previously and is as fast as that predicted on the basis of the rate of in vivo acetate synthesis. When the reaction is dependent upon CODH, the rate of acetyl-CoA synthesis is approximately 0.82 mumol min-1 mg-1, approximately 10-fold higher than that observed previously; however, it is still lower than the rate of in vivo acetate synthesis. It appears that at least two steps in the overall synthesis of acetyl-CoA from CH3-H4folate, CO, and CoA can be partially rate limiting. At optimal conditions of low pH (approximately 5.8) and low ionic strength, the rate-limiting step involves methylation of CODH by the methylated C/Fe-SP. At higher pH values and/or higher ionic strength, transfer of the methyl group of CH3-H4folate to the C/Fe-SP becomes rate limiting.
PMCID: PMC206262  PMID: 1624454
2.  Use of abbreviated mental status examination in the initial assessment of overdose patients. 
Archives of Emergency Medicine  1988;5(3):139-145.
Application of formal mental status testing in the emergency department (ED) to assess cognitive function has been hampered by the lack of a rapidly applied instrument. An Abbreviated Mental Status Examination (AMSE) with 10 test items that can be administered within five minutes by nursing personnel is described. Evaluation of the instrument on 296 ambulatory ED patients with grossly normal neurologic function showed that 93% of patients had a total score of seven or more correct answers and 83% of patients had eight or more correct answers. Application of the AMSE to 375 acute drug overdose patients at the same hospital showed a significant correlation with Glasgow Coma Scale (GCS) score. An AMSE score of seven or less was found to be more sensitive than a GCS score of 13 or less for admission to the intensive care unit (ICU) and complications in the ICU (P less than 0.001). The AMSE score may serve as a useful tool for stratifying cognitive function in acute drug overdose patients and for identifying patients at increased risk for an adverse outcome from their overdose.
PMCID: PMC1285516  PMID: 3178971
4.  Independent modulation of von Willebrand factor and fibrinogen binding to the platelet membrane glycoprotein IIb/IIIa complex as demonstrated by monoclonal antibody. 
Journal of Clinical Investigation  1985;76(5):1950-1958.
In this study we have used two new monoclonal antibodies, designated LJP5 and LJP9, as well as a previously described one, AP2, all specific for the platelet membrane glycoprotein (GP)IIb/IIIa complex. None of them reacted with dissociated GPIIb or GPIIIa. The monovalent Fab fragment of both LJP5 and LJP9 bound to unstimulated platelets in a saturable manner, but binding was markedly decreased after platelets had been incubated at 37 degrees C in the absence of added extracellular calcium. The binding of LJP9 was not affected by AP2, but was blocked by excess LJP5. On the contrary, the binding of LJP5 was blocked in the presence of both AP2 and LJP9. Thus, these antibodies bound to distinct epitopes of GPIIb/IIIa. At saturation, the binding to unstimulated platelets was between 2.41 and 10.9 X 10(4) molecules/platelet for LJP5 and between 3.47 and 9.1 X 10(4) molecules/platelet for LJP9 (range of 11 and 10 experiments, respectively). Binding increased up to 50% after thrombin stimulation. The estimated association constant, Ka, was 2.7 X 10(7) M-1 for LJP5 and 3.85 X 10(7) M-1 for LJP9. Both LJP5 and LJP9 partially inhibited the association of 45Ca2+ with the surface of unstimulated platelets. Moreover, both antibodies blocked the binding of von Willebrand factor (vWF) to stimulated platelets, whereas only LJP9, but not LJP5, blocked fibrinogen binding. LJP9 was also a potent inhibitor of platelet aggregation, whereas LJP5 was without effect in this regard. The results of the present study demonstrate that independent modulation of vWF and fibrinogen binding to stimulated platelets can be attained with monoclonal antibodies directed against distinct epitopes of GPIIb/IIIa.
PMCID: PMC424250  PMID: 2414325
5.  Human factor VIII procoagulant protein. Monoclonal antibodies define precursor-product relationships and functional epitopes. 
Journal of Clinical Investigation  1985;76(1):117-124.
The human Factor VIII procoagulant protein (VIII:C) purified from commercial Factor VIII concentrate consisted of a polypeptide doublet of 80,000 mol wt, a 92,000-mol wt polypeptide, and additional polypeptides of up to 188,000 mol wt. Thrombin digests contained a doublet of 72,000 mol wt, as well as 54,000- and 44,000-mol wt fragments. Proteolysis studies of purified VIII:C using thrombin and activated protein C have suggested that the 92,000- and 80,000 (or 72,000)-mol wt polypeptides comprise activated VIII:C. We have now used seven monoclonal antibodies raised against purified VIII:C to construct a preliminary epitope map of these VIII:C polypeptides. The specific VIII:C polypeptides with which the monoclonal antibodies reacted were determined by immunoblotting of VIII:C onto nitrocellulose sheets after reduced NaDodSO4-polyacrylamide gel electrophoresis. A minimum of five distinct epitopes were defined by these monoclonal anti-VIII:C antibodies. Identification of polypeptides bearing these epitopes allowed localization of distinct thrombin cleavage sites to the 92,000- and 80,000-mol wt chains, helped define polypeptide chain precursor-product relationships, and suggested that both the 92,000- and 80,000-mol wt polypeptides are necessary for VIII:C function. These data and their interpretation are consistent with the published description of the complete primary structure of VIII:C and its thrombin cleavage products. The 92,000- and 80,000-mol wt chains have been located at the amino- and carboxy-terminal ends of the molecule, respectively.
PMCID: PMC423722  PMID: 2410456

Results 1-6 (6)