Search tips
Search criteria

Results 1-12 (12)

Clipboard (0)
more »
Year of Publication
more »
Document Types
1.  Preeclampsia and maternal breast cancer risk by offspring gender: do elevated androgen concentrations play a role? 
British Journal of Cancer  2007;97(5):688-690.
Among older mothers, preeclampsia in the first pregnancy was associated with a reduction in maternal breast cancer risk that was significantly more pronounced in women bearing male than female infants. Androgen concentrations in male, preeclamptic pregnancies were consistent with the hypothesis that elevated pregnancy androgens might mediate this apparent modifying effect of fetal gender.
PMCID: PMC2360362  PMID: 17687337
preeclampsia; androgens; hormones; breast cancer; maternal; offspring gender
2.  National surveillance for infection with Cryptosporidium parvum, 1995-1998: what have we learned? 
Public Health Reports  2000;115(4):358-363.
OBJECTIVE: Infection with Cryptosporidium parvum generally causes a self-limiting diarrheal illness. Symptoms can, however, last for weeks and can be severe, especially in immunocompromised individuals. In 1994, the Council of State and Territorial Epidemiologists (CSTE) recommended that cryptosporidiosis be a nationally notifiable disease. Forty-seven states have made infection with C. parvum notifiable to the Centers for Disease Control and Prevention (CDC), and laboratories in the three remaining states report cases to state health departments, which may report them to the CDC. To see what the data show about patterns of infection, the authors reviewed the first four years of reports to the CDC. METHODS: The authors analyzed reports of laboratory-confirmed cases of cryptosporidiosis for 1995-1998. RESULTS: During 1995-1998, 11,612 laboratory-confirmed cases of cryptosporidiosis were reported to the CDC. All ages and both sexes were affected. An increase in case reporting was observed in late summer during each year of surveillance for people <20 years of age. CONCLUSION: The first national data on laboratory-confirmed cryptosporidiosis cases, although incomplete, provide useful information on the burden of disease in the nation as well as provide baseline data for monitoring of future trends.
PMCID: PMC1308577  PMID: 11059430
3.  Natural immune response to the C-terminal 19-kilodalton domain of Plasmodium falciparum merozoite surface protein 1. 
Infection and Immunity  1996;64(7):2716-2723.
We have characterized the natural immune responses to the 19-kDa domain of merozoite surface protein 1 in individuals from an area of western Kenya in which malaria is holoendemic. We used the three known natural variant forms of the yeast-expressed recombinant 19-kDa fragment that are referred to as the E-KNG, Q-KNG, and E-TSR antigens. T-cell proliferative responses in individuals older than 15 years and the profile of immunoglobulin G (IgG) antibody isotypes in individuals from 2 to 74 years old were determined. Positive proliferative responses to the Q-KNG antigen were observed for 54% of the individuals, and 37 and 35% of the individuals responded to the E-KNG and E-TSR constructs, respectively. Considerable heterogeneity in the T-cell proliferative responses to these three variant antigens was observed in different individuals, suggesting that the 19-kDa antigen may contain variant-specific T epitopes. Among responses of the different isotypes of the IgG antibody, IgG1 and IgG3 isotype responses were predominant, and the prevalence and levels of the responses increased with age. We also found that a higher level of IgG1 antibody response correlated with lower parasite density among young age groups, suggesting that IgG1 antibody response may play a role in protection against malaria. However, there was no correlation between the IgG3 antibody level and protection. Furthermore, we observed that although the natural antibodies cross-reacted with all three variant 19-kDa antigens, IgG3 antibodies in 12 plasma samples recognized only the E-KNG and Q-KNG constructs and not the E-TSR antigen. This result suggests that the fine specificity of IgG3 antibodies differentiates among variant-specific natural B-cell determinants in the second epidermal growth factor domain (KNG and TSR) of the antigen.
PMCID: PMC174131  PMID: 8698500
4.  Mutations in the homologous ZDS1 and ZDS2 genes affect cell cycle progression. 
Molecular and Cellular Biology  1996;16(10):5254-5263.
The Saccharomyces cerevisiae ZDS1 and ZDS2 genes were identified as multicopy suppressors in distinct genetic screens but were found to encode highly similar proteins. We show that at semipermissive temperatures, a yeast strain with a cdc28-1N allele was uniquely deficient in plasmid maintenance in comparison with strains harboring other cdc28 thermolabile alleles. Quantitative analysis of plasmid loss rates in cdc28-1N strains carrying plasmids with multiple replication origins suggests that a defect in initiating DNA replication probably causes this plasmid loss phenotype. The ZDS1 gene was isolated as a multicopy suppressor of the cdc28-1N plasmid loss defect. A zds1 deletion exhibits genetic interactions with cdc28-1N but not with other cdc28 alleles. SIN4 encodes a protein which is part of the RNA polymerase II holoenzyme-mediator complex, and a sin4 null mutation has pleiotropic effects suggesting roles in transcriptional regulation and chromatin structure. The ZDS2 gene was isolated as a multicopy suppressor of the temperature-sensitive growth defect caused by the sin4 null mutation. Disruption of either ZDS1 or ZDS2 causes only modest phenotypes. However, a strain with both ZDS1 and ZDS2 disrupted is extremely slowly growing, has marked defects in bud morphology, and shows defects in completing S phase or entering mitosis.
PMCID: PMC231525  PMID: 8816438
5.  Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. 
Molecular and Cellular Biology  1995;15(5):2612-2624.
Cyclin E was first identified by screening human cDNA libraries for genes that would complement G1 cyclin mutations in Saccharomyces cerevisiae and has subsequently been found to have specific biochemical and physiological properties that are consistent with it performing a G1 function in mammalian cells. Most significantly, the cyclin E-Cdk2 complex is maximally active at the G1/S transition, and overexpression of cyclin E decreases the time it takes the cell to complete G1 and enter S phase. We have now found that mammalian cells express two forms of cyclin E protein which differ from each other by the presence or absence of a 15-amino-acid amino-terminal domain. These proteins are encoded by alternatively spliced mRNAs and are localized to the nucleus during late G1 and early S phase. Fibroblasts engineered to constitutively overexpress either form of cyclin E showed elevated cyclin E-dependent kinase activity and a shortened G1 phase of the cell cycle. The overexpressed cyclin E protein was detected in the nucleus during all cell cycle phases, including G0. Although the cyclin E protein could be overexpressed in quiescent cells, the cyclin E-Cdk2 complex was inactive. It was not activated until 6 to 8 h after readdition of serum, 4 h earlier than the endogenous cyclin E-Cdk2. This premature activation of cyclin E-Cdk2 was consistent with the extent of G1 shortening caused by cyclin E overexpression. Microinjection of affinity-purified anti-cyclin E antibodies during G1 inhibited entry into S phase, whereas microinjection performed near the G1/S transition was ineffective. These results demonstrate that cyclin E is necessary for entry into S phase. Moreover, we found that cyclin E, in contrast to cyclin D1, was required for the G1/S transition even in cells lacking retinoblastoma protein function. Therefore, cyclins E and D1 control two different transitions within the human cell cycle.
PMCID: PMC230491  PMID: 7739542
6.  Inactivation of a Cdk2 inhibitor during interleukin 2-induced proliferation of human T lymphocytes. 
Molecular and Cellular Biology  1994;14(7):4889-4901.
Peripheral blood T lymphocytes require two sequential mitogenic signals to reenter the cell cycle from their natural, quiescent state. One signal is provided by stimulation of the T-cell antigen receptor, and this induces the synthesis of both cyclins and cyclin-dependent kinases (CDKs) that are necessary for progression through G1. Antigen receptor stimulation alone, however, is insufficient to promote activation of G1 cyclin-Cdk2 complexes. This is because quiescent lymphocytes contain an inhibitor of Cdk2 that binds directly to this kinase and prevents its activation by cyclins. The second mitogenic signal, which can be provided by the cytokine interleukin 2, leads to inactivation of this inhibitor, thereby allowing Cdk2 activation and progression into S phase. Enrichment of the Cdk2 inhibitor from G1 lymphocytes by cyclin-CDK affinity chromatography indicates that it may be p27Kip1. These observations show how sequentially acting mitogenic signals can combine to promote activation of cell cycle proteins and thereby cause cell proliferation to start. CDK inhibitors have been shown previously to be induced by signals that negatively regulate cell proliferation. Our new observations show that similar proteins are down-regulated by positively acting signals, such as interleukin 2. This finding suggests that both positive and negative growth signals converge on common targets which are regulators of G1 cyclin-CDK complexes. Inactivation of G1 cyclin-CDK inhibitors by mitogenic growth factors may be one biochemical pathway underlying cell cycle commitment at the restriction point in G1.
PMCID: PMC358861  PMID: 7516474
7.  Preeclampsia is associated with abnormal expression of adhesion molecules by invasive cytotrophoblasts. 
Journal of Clinical Investigation  1993;91(3):950-960.
In normal human pregnancy, invasion of the uterus and its arterial system by cytotrophoblasts extends through the entire decidua and the adjacent third of the myometrium. Our previous work showed that during the first trimester of pregnancy, invasion is accompanied by a marked change in the expression of cell adhesion molecules by invasive cytotrophoblasts. In the pregnancy disorder preeclampsia, cytotrophoblast invasion is limited to the superficial decidua, and few arterioles are breached. The purpose of this study was to determine whether cytotrophoblast expression of adhesion molecules in this disorder is also abnormal. Placental bed biopsy specimens from normal pregnancies and those complicated by preeclampsia were stained with anti-integrin antibodies. The results showed that adhesion molecule switching by invasive cytotrophoblasts is abnormal in preeclampsia, which suggests that this subpopulation of trophoblast cells fails to differentiate properly. A likely result is that the delicate balance of adhesive interactions that normally permit cytotrophoblast invasion is tipped in favor of those which restrain this process, with the net effect of shallow uterine invasion.
PMCID: PMC288047  PMID: 7680671
8.  Expression of the c-myc proto-oncogene during development of Xenopus laevis. 
Molecular and Cellular Biology  1986;6(12):4499-4508.
We isolated and characterized Xenopus laevis c-myc cDNAs from an oocyte-specific library. These cDNA clones encompass 2.35 kilobases of the X. laevis c-myc RNA and contain the entire coding domain of 1,257 nucleotides of the 419-amino acid-long X. laevis c-myc protein. The 2.7-kilobase X. laevis c-myc mRNA is expressed in the oocyte, maintained in the egg, and is present throughout the early cleavage stages of embryogenesis. At the time of transcriptional activation in the embryo the c-myc RNA levels show a significant decline and then reaccumulate continuously throughout the remainder of premorphogenic development. At the early neurula stage of embryogenesis the pattern of c-myc RNA expression is elevated in the mesoderm with respect to the endoderm and ectoderm. In the adult X. laevis the c-myc mRNA is expressed in some (e.g., skin, muscle) but not all differentiated tissues. The X. laevis c-myc protein migrates as a doublet of 61,000- and 64,000-dalton species. Both species are phosphorylated in oocytes and somatic cells, exhibit extremely short half-lives of less than 30 min, and are localized to the nuclear fraction of somatic cells. By contrast, the oocyte protein shows both cytoplasmic and germinal vesicle distribution and appears to be stable.
PMCID: PMC367234  PMID: 3540613
9.  Characterization of human platelet vasopressin receptors. 
Journal of Clinical Investigation  1985;76(5):1857-1864.
Using tritiated arginine-8-vasopressin [3H]AVP, vasopressin-specific binding sites were detected on human platelet membranes. One class of high-affinity binding sites was characterized with an equilibrium dissociation constant of 1.01 +/- 0.06 nM and a maximal binding capacity of 100 +/- 10 fmol/mg of protein (n = 12). Highly significant correlations were found between the relative agonistic (r = 0.87, P = 0.002) or antagonistic (r = 0.99, P = 0.007) vasopressor activities of a series of 13 AVP structural analogues and their relative abilities to inhibit [3H]AVP binding to platelet receptors whereas no such relationship existed when antidiuretic activities were considered (r = 0.28, P = 0.47). AVP did not stimulate cyclic AMP production of human platelets; on the contrary, high AVP concentrations (10(-6) M) inhibited cyclic AMP production measured in basal and prostaglandin E1-stimulated conditions. AVP caused intact platelet aggregation with a half-maximal aggregation (EC50) of 28 +/- 2 nM. This effect was more potently reversed by the specific vascular antagonist d(CH2)5Tyr(Me)AVP (pA2 = 8.10 +/- 0.23) than by the specific renal antagonist d(CH2)5IleuAlaAVP (pA2 = 6.67 +/- 0.12). The pA2 values of these two antagonists in platelets are in close agreement with the pKi values obtained in competition experiments (respectively 8.59 and 6.93) and with pA2 values reported in the literature for their in vivo antivasopressor activity (respectively 8.62 and 6.03). The observation that human platelets bear AVP receptors belonging to the vascular class suggests that platelet receptors can be used to further explore the role of vasopressin in cardiovascular homeostasis.
PMCID: PMC424226  PMID: 2997293
11.  Chloroquine-resistant malaria? 
British Medical Journal  1972;2(5805):108-109.
PMCID: PMC1787838  PMID: 5018287
12.  Activation of the p34 CDC2 protein kinase at the start of S phase in the human cell cycle. 
Molecular Biology of the Cell  1992;3(4):389-401.
Using a protocol for selecting cells on the basis of both size and age (with respect to the preceding mitosis), we isolated highly synchronous human G1 cells. With this procedure, we demonstrated that the p34 CDC2 kinase was activated at the start of S phase. Cyclin A synthesis began at the same time, and activation of the p34 CDC2 kinase at the start of S phase was, at least in part, due to its association with cyclin A. Furthermore, cells synchronized in late G1 by exposure to the drug mimosine contain active cyclin A/p34 CDC2 kinase, indicating that p34 CDC2 activation can occur before DNA synthesis begins. Thus, the cyclin A/CDC2 complex, which previously has been shown to be sufficient to start SV40 DNA synthesis in vitro, assembles and is activated at the start of S phase in vivo.
PMCID: PMC275590  PMID: 1386764

Results 1-12 (12)