Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)
Year of Publication
Document Types
1.  Expression and characterization of glycophospholipid-anchored human immunodeficiency virus type 1 envelope glycoproteins. 
Journal of Virology  1993;67(9):5279-5288.
Four chimeric human immunodeficiency virus type 1 (HIV-1) env genes were constructed which encoded the extracellular domain of either the wild-type or a cleavage-defective HIV-1 envelope glycoprotein (gp160) fused at one of two different positions in env to a C-terminal glycosyl-phosphatidylinositol (GPI) attachment signal from the mouse Thy-1.1 glycoprotein. All four of the constructs encoded glycoproteins that were efficiently expressed when Rev was supplied in trans, and the two cleavable forms were processed normally to gp120 and a chimeric "gp41." The chimeric glycoproteins, in contrast to the wild-type glycoprotein, could be cleaved from the surface of transfected cells by treatment with phosphatidylinositol-specific phospholipase C, indicating that they were anchored in the plasma membrane by a GPI moiety. These GPI-anchored glycoproteins were transported intracellularly at a rate only slightly lower than that of the full-length HIV-1 glycoprotein and were present on the cell surface in equivalent amounts. Nevertheless, all four glycoproteins were defective in mediating both cell-cell and virus-cell fusion as determined by syncytium formation in COS-1-HeLa-T4 cell mixtures and trans complementation of an env-defective HIV-1 genome.
PMCID: PMC237926  PMID: 8102410
2.  Truncation of the human immunodeficiency virus type 1 transmembrane glycoprotein cytoplasmic domain blocks virus infectivity. 
Journal of Virology  1992;66(11):6616-6625.
Human immunodeficiency virus type 1 contains a transmembrane glycoprotein with an unusually long cytoplasmic domain. To determine the role of this domain in virus replication, a series of single nucleotide changes that result in the insertion of premature termination codons throughout the cytoplasmic domain has been constructed. These mutations delete from 6 to 192 amino acids from the carboxy terminus of gp41 and do not affect the amino acid sequence of the regulatory proteins encoded by rev and tat. The effects of these mutations on glycoprotein biosynthesis and function as well as on virus infectivity have been examined in the context of a glycoprotein expression vector and the viral genome. All of the mutant glycoproteins were synthesized, processed, and transported to the cell surface in a manner similar to that of the wild-type glycoprotein. With the exception of mutants that remove the membrane anchor domain, all of the mutant glycoproteins retained the ability to cause fusion of CD4-bearing cells. However, deletion of more than 19 amino acids from the C terminus of gp41 blocked the ability of mutant virions to infect cells. This defect in virus infectivity appeared to be due at least in part to a failure of the virus to efficiently incorporate the truncated glycoprotein. Similar data were obtained for mutations in two different env genes and two different target cell lines. These results indicate that the cytoplasmic domain of gp41 plays a critical role during virus assembly and entry in the life cycle of human immunodeficiency virus type 1.
PMCID: PMC240157  PMID: 1357190
3.  Mutations in the leucine zipper of the human immunodeficiency virus type 1 transmembrane glycoprotein affect fusion and infectivity. 
Journal of Virology  1992;66(8):4748-4756.
Many retroviruses, including the human and simian immunodeficiency viruses, contain a leucine zipper-like repeat in a highly conserved region of the external domain of the transmembrane (TM) glycoprotein. This region has been postulated to play a role in stabilizing the oligomeric form of these molecules. To determine what role this region might play in envelope structure and function, several mutations were engineered into the middle isoleucine of the leucine zipper-like repeat of the human immunodeficiency virus type 1 (HIV-1) TM protein. A phenotypic analysis of these mutants demonstrated that conservative mutations (Ile to Val or Leu) did not block the ability of the viral glycoprotein to mediate cell-cell fusion or affect virus infectivity. In contrast, each of the other mutations, except for the Ile-to-Ala change, completely inhibited the ability of the glycoprotein to fuse HeLa-T4 cells and of mutant virions to infect H9 cells. The alanine mutation produced an intermediate phenotype in which both cell fusion and infectivity were significantly reduced. Thus, the biological activity of the glycoprotein titrates with the hydrophobicity of the residue in this position. None of the mutations affected the synthesis, oligomer formation, transport, or processing of the HIV glycoprotein complex. Although these results do not rule out a role for the leucine zipper region in glycoprotein oligomerization, they clearly point to a critical role for it in a post-CD4 binding step in HIV membrane fusion and virus entry.
PMCID: PMC241301  PMID: 1629954

Results 1-3 (3)