PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
author:("ree, Karen")
1.  Agpat6—a Novel Lipid Biosynthetic Gene Required for Triacylglycerol Production in Mammary Epithelium 
Journal of lipid research  2006;47(4):734-744.
In analyzing the sequence tags for mutant mouse embryonic stem (ES) cell lines in BayGenomics (a mouse gene-trapping resource), we identified a novel gene, Agpat6, with sequence similarities to previously characterized glycerolipid acyltransferases. Agpat6’s closest family member is another novel gene that we have provisionally designated Agpat8. Both Agpat6 and Agpat8 are conserved from plants, nematodes, and flies to mammals. AGPAT6, which is predicted to contain multiple membrane-spanning helices, is found exclusively within the endoplasmic reticulum in mammalian cells. To gain insights into the in vivo importance of Agpat6, we used the Agpat6 ES cell line from BayGenomics to create Agpat6-deficient (Agpat6−/−) mice. Agpat6−/− mice lacked full-length Agpat6 transcripts, as judged by northern blots. One of the most striking phenotypes of Agpat6−/− mice was a defect in lactation. Pups nursed by Agpat6−/− mothers die perinatally. Normally, Agpat6 is expressed at high levels in the mammary epithelium of breast tissue, but not in the surrounding adipose tissue. Histological studies revealed that the aveoli and ducts of Agpat6−/− lactating mammary glands were underdeveloped, and there was a dramatic decrease in size and number of lipid droplets within mammary epithelial cells and ducts. Also, the milk from Agpat6−/− mice was markedly depleted in diacylglycerols and triacylglycerols. Thus, we identified a novel glycerolipid acyltransferase of the endoplasmic reticulum, AGPAT6, which is crucial for the production of milk fat by the mammary gland.
doi:10.1194/jlr.M500556-JLR200
PMCID: PMC3196597  PMID: 16449762
LPAAT; acyltransferase; transacylase; milk fat
2.  Agpat6 deficiency causes subdermal lipodystrophy and resistance to obesityS 
Journal of lipid research  2006;47(4):745-754.
Triglyceride synthesis in most mammalian tissues involves the sequential addition of fatty acids to a glycerol backbone, with unique enzymes required to catalyze each acylation step. Acylation at the sn-2 position requires 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) activity. To date, seven Agpat genes have been identified based on activity and/or sequence similarity, but their physiological functions have not been well established. We have generated a mouse model deficient in AGPAT6, which is normally expressed at high levels in brown adipose tissue (BAT), white adipose tissue (WAT), and liver. Agpat6-deficient mice exhibit a 25% reduction in body weight and resistance to both diet-induced and genetically induced obesity. The reduced body weight is associated with increased energy expenditure, reduced triglyceride accumulation in BAT and WAT, reduced white adipocyte size, and lack of adipose tissue in the subdermal region. In addition, the fatty acid composition of triacylglycerol, diacylglycerol, and phospholipid is altered, with proportionally greater polyunsaturated fatty acids at the expense of monounsaturated fatty acids. Thus, Agpat6 plays a unique role in determining triglyceride content and composition in adipose tissue and liver that cannot be compensated by other members of the Agpat family.
doi:10.1194/jlr.M500553-JLR200
PMCID: PMC2901549  PMID: 16436371
acyltransferase; gene-trap; adipose tissue; energy expenditure; 1-acylglycerol-3-phosphate O-acyltransferase

Results 1-2 (2)