Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)
more »
Year of Publication
Document Types
author:("ree, Karen")
1.  The Sex Chromosome Trisomy mouse model of XXY and XYY: metabolism and motor performance 
Klinefelter syndrome (KS), caused by XXY karyotype, is characterized by low testosterone, infertility, cognitive deficits, and increased prevalence of health problems including obesity and diabetes. It has been difficult to separate direct genetic effects from hormonal effects in human studies or in mouse models of KS because low testosterone levels are confounded with sex chromosome complement.
In this study, we present the Sex Chromosome Trisomy (SCT) mouse model that produces XXY, XYY, XY, and XX mice in the same litters, each genotype with either testes or ovaries. The independence of sex chromosome complement and gonadal type allows for improved recognition of sex chromosome effects that are not dependent on levels of gonadal hormones. All mice were gonadectomized and treated with testosterone for 3 weeks. Body weight, body composition, and motor function were measured.
Before hormonal manipulation, XXY mice of both sexes had significantly greater body weight and relative fat mass compared to XY mice. After gonadectomy and testosterone replacement, XXY mice (both sexes) still had significantly greater body weight and relative fat mass, but less relative lean mass compared to XY mice. Liver, gonadal fat pad, and inguinal fat pad weights were also higher in XXY mice, independent of gonadal sex. In several of these measures, XX mice also differed from XY mice, and gonadal males and females differed significantly on almost every metabolic measure. The sex chromosome effects (except for testis size) were also seen in gonadally female mice before and after ovariectomy and testosterone treatment, indicating that they do not reflect group differences in levels of testicular secretions. XYY mice were similar to XY mice on body weight and metabolic variables but performed worse on motor tasks compared to other groups.
We find that the new SCT mouse model for XXY and XYY recapitulates features found in humans with these aneuploidies. We illustrate that this model has significant promise for unveiling the role of genetic effects compared to hormonal effects in these syndromes, because many phenotypes are different in XXY vs. XY gonadal female mice which have never been exposed to testicular secretions.
PMCID: PMC3751353  PMID: 23926958
Klinefelter; Sex chromosome trisomy; XXY; XYY; Mouse; X chromosome; Y chromosome; Body weight; Obesity
2.  The Number of X Chromosomes Causes Sex Differences in Adiposity in Mice 
PLoS Genetics  2012;8(5):e1002709.
Sexual dimorphism in body weight, fat distribution, and metabolic disease has been attributed largely to differential effects of male and female gonadal hormones. Here, we report that the number of X chromosomes within cells also contributes to these sex differences. We employed a unique mouse model, known as the “four core genotypes,” to distinguish between effects of gonadal sex (testes or ovaries) and sex chromosomes (XX or XY). With this model, we produced gonadal male and female mice carrying XX or XY sex chromosome complements. Mice were gonadectomized to remove the acute effects of gonadal hormones and to uncover effects of sex chromosome complement on obesity. Mice with XX sex chromosomes (relative to XY), regardless of their type of gonad, had up to 2-fold increased adiposity and greater food intake during daylight hours, when mice are normally inactive. Mice with two X chromosomes also had accelerated weight gain on a high fat diet and developed fatty liver and elevated lipid and insulin levels. Further genetic studies with mice carrying XO and XXY chromosome complements revealed that the differences between XX and XY mice are attributable to dosage of the X chromosome, rather than effects of the Y chromosome. A subset of genes that escape X chromosome inactivation exhibited higher expression levels in adipose tissue and liver of XX compared to XY mice, and may contribute to the sex differences in obesity. Overall, our study is the first to identify sex chromosome complement, a factor distinguishing all male and female cells, as a cause of sex differences in obesity and metabolism.
Author Summary
Differences exist between men and women in the development of obesity and related metabolic diseases such as type 2 diabetes and cardiovascular disease. Previous studies have focused on the sex-biasing role of hormones produced by male and female gonads, but these cannot account fully for the sex differences in metabolism. We discovered that removal of the gonads uncovers an important genetic determinant of sex differences in obesity—the presence of XX or XY sex chromosomes. We used a novel mouse model to tease apart the effects of male and female gonads from the effects of XX or XY chromosomes. Mice with XX sex chromosomes (relative to XY), regardless of their type of gonad, had increased body fat and ate more food during the sleep period. Mice with two X chromosomes also had accelerated weight gain, fatty liver, and hyperinsulinemia on a high fat diet. The higher expression levels of a subset of genes on the X chromosome that escape inactivation may influence adiposity and metabolic disease. The effect of X chromosome genes is present throughout life, but may become particularly significant with increases in longevity and extension of the period spent with reduced gonadal hormone levels.
PMCID: PMC3349739  PMID: 22589744

Results 1-2 (2)