PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
author:("ree, Karen")
1.  Lipin-1 and lipin-3 together determine adiposity in vivo☆ 
Molecular Metabolism  2013;3(2):145-154.
The lipin protein family of phosphatidate phosphatases has an established role in triacylglycerol synthesis and storage. Physiological roles for lipin-1 and lipin-2 have been identified, but the role of lipin-3 has remained mysterious. Using lipin single- and double-knockout models we identified a cooperative relationship between lipin-3 and lipin-1 that influences adipogenesis in vitro and adiposity in vivo. Furthermore, natural genetic variations in Lpin1 and Lpin3 expression levels across 100 mouse strains correlate with adiposity. Analysis of PAP activity in additional metabolic tissues from lipin single- and double-knockout mice also revealed roles for lipin-1 and lipin-3 in spleen, kidney, and liver, for lipin-1 alone in heart and skeletal muscle, and for lipin-1 and lipin-2 in lung and brain. Our findings establish that lipin-1 and lipin-3 cooperate in vivo to determine adipose tissue PAP activity and adiposity, and may have implications in understanding the protection of lipin-1-deficient humans from overt lipodystrophy.
doi:10.1016/j.molmet.2013.11.008
PMCID: PMC3953701  PMID: 24634820
Gene family; Knockout mouse; Adipogenesis; Triacylglycerol; Glycerolipid biosynthesis
2.  Phosphatidate degradation: Phosphatidate phosphatases (lipins) and lipid phosphate phosphatases 
Biochimica et biophysica acta  2009;1791(9):956-961.
Summary
Three lipid phosphate phosphatases (LPPs) regulate cell signaling by modifying the concentrations of a variety of lipid phosphates versus their dephosphorylated products. In particular, the LPPs are normally considered to regulate signaling by the phospholipase D (PLD) pathway by converting phosphatidate (PA) to diacylglycerol (DAG). LPP activities do modulate the accumulations of PA and DAG following PLD activation, but this could also involve an effect upstream of PLD activation. The active sites of the LPPs are on the exterior surface of plasma membranes, or on the luminal surface of internal membranes. Consequently, the actions of the LPPs in metabolizing PA formed by PLD1 or PLD2 should depend on the access of this substrate to the active site of the LPPs. Alternatively, PA generated on the cytosolic surface of membranes should be readily accessible to the family of specific phosphatidate phosphatases, namely the lipins. Presently, there is only indirect evidence for the lipins participating in cell signaling following PLD activation. So far, we know relatively little about how individual LPPs and specific phosphatidate phosphatases (lipins) modulate cell signaling through controlling the turnover of bioactive lipids that are formed after PLD activation.
doi:10.1016/j.bbalip.2009.02.007
PMCID: PMC2875194  PMID: 19250975
Diacylglycerol; lysophosphatidate; phosphatidate; phospholipase D; triacylglycerol synthesis

Results 1-2 (2)